2 releases
0.1.1-alpha.4 | Jun 7, 2023 |
---|---|
0.1.1-alpha.3 | Jun 6, 2023 |
#721 in Science
31 downloads per month
325KB
6.5K
SLoC
TCA is a library to facilitate open-ended analysis of scientific data, ease the application of ML models, and provide a common data interface for science and engineering teams.
Overview
The main interface for users is through datafusion's SessionContext
plus the TCASessionExt
extension trait. This has a number of convenience methods for loading data from various sources.
See the read_*
methods on TCASessionExt
for more information. For example, read_fasta
, or read_gff
. There's also a read_inferred_tca_table
method that will attempt to infer the data type and compression from the file extension for ease of use.
To facilitate those methods, TCA implements a number of traits for DataFusion that serve as a good base for scientific data work. See the datasources
module for more information.
Examples
Loading a FASTA file
use tca::context::TCASessionExt;
use datafusion::prelude::*;
use datafusion::error::Result;
let ctx = SessionContext::new();
let df = ctx.read_fasta("test-data/datasources/fasta/test.fasta", None).await?;
assert_eq!(df.schema().fields().len(), 3);
assert_eq!(df.schema().field(0).name(), "id");
assert_eq!(df.schema().field(1).name(), "description");
assert_eq!(df.schema().field(2).name(), "sequence");
let results = df.collect().await?;
assert_eq!(results.len(), 1); // 1 batch, small dataset
Loading a ZSTD-compressed FASTA file
use tca::context::TCASessionExt;
use datafusion::prelude::*;
use datafusion::error::Result;
use datafusion::datasource::file_format::file_type::FileCompressionType;
let ctx = SessionContext::new();
let file_compression = FileCompressionType::ZSTD;
let df = ctx.read_fasta("test-data/datasources/fasta/test.fasta.zstd", Some(file_compression)).await?;
assert_eq!(df.schema().fields().len(), 3);
assert_eq!(df.schema().field(0).name(), "id");
assert_eq!(df.schema().field(1).name(), "description");
assert_eq!(df.schema().field(2).name(), "sequence");
let results = df.collect().await?;
assert_eq!(results.len(), 1); // 1 batch, small dataset
Dependencies
~68MB
~1.5M SLoC