39 releases (11 breaking)
0.19.3 | Oct 22, 2024 |
---|---|
0.19.1 | Aug 12, 2024 |
0.18.1 | Jul 13, 2024 |
0.10.0 | Mar 29, 2024 |
0.8.11 | Nov 17, 2023 |
#28 in HTTP server
68,242 downloads per month
325KB
8K
SLoC
datafusion-server crate
Multiple session, variety of data sources query server implemented by Rust.
- Asynchronous architecture used by Tokio ecosystem
- Apache Arrow with Apache DataFusion
- Supports multiple data source with SQL queries
- Python plugin feature for data source connector and post processor
- Horizontal scaling architecture between servers using the Arrow Flight gRPC feature
Please see the Documentation for an introductory tutorial and a full usage guide. Additionally, the REST API documentation is available according to the OpenAPI specification. Also, refer to the CHANGELOG for the latest information.
System Overview
License
License under the MIT
Copyright © 2022 - 2024 SAL Ltd. - https://sal.co.jp
Supported environment
- Linux
- BSD based Unix incl. macOS / Mac OSX
- SVR based Unix
- Windows incl. WSL2 / Cygwin
and other LLVM supported environment.
Using pre-built Docker image (Currently available amd64 architecture only)
Pre-require
- Docker CE / EE v20+
Pull container image from GitHub container registry
$ docker pull ghcr.io/sal-openlab/datafusion-server/datafusion-server:latest
or built without Python plugin version.
$ docker pull ghcr.io/sal-openlab/datafusion-server/datafusion-server-without-plugin:latest
Executing container
$ docker run -d --rm \
-p 4000:4000 \
-v ./data:/var/datafusion-server/data \
--name datafusion-server \
ghcr.io/sal-openlab/datafusion-server/datafusion-server:latest
If you are only using sample data in a container, omit the -v ./data:/var/xapi-server/data
.
Build container your self
Pre-require
- Docker CE / EE v20+
Build two containers, datafusion-server and datafusion-server-without-plugin
$ cd <repository-root-dir>
$ ./make-containers.sh
Executing container
$ docker run -d --rm \
-p 4000:4000 \
-v ./bin/data:/var/datafusion-server/data \
--name datafusion-server \
datafusion-server:0.19.3
If you are only using sample data in a container, omit the -v ./bin/data:/var/xapi-server/data
.
Build from source code for use in your project
Pre-require
- Rust Toolchain 1.76+ (Edition 2021) from https://www.rust-lang.org
- or the Rust official container from https://hub.docker.com/_/rust
How to run
$ cargo init server-executor
$ cd server-executor
Example of Cargo.toml
[package]
name = "server-executor"
version = "0.1.0"
edition = "2021"
[dependencies]
datafusion-server = "0.19.3"
clap = { version = "4.5", features = ["derive"] }
Example of src/main.rs
use std::path::PathBuf;
use clap::Parser;
use datafusion_server::settings::Settings;
#[derive(Parser)]
#[clap(author, version, about = "Arrow and other large datasets web server", long_about = None)]
struct Args {
#[clap(
long,
value_parser,
short = 'f',
value_name = "FILE",
help = "Configuration file",
default_value = "./config.toml"
)]
config: PathBuf,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
let args = Args::parse();
let settings = Settings::new_with_file(&args.config)?;
datafusion_server::execute(settings)?;
Ok(())
}
For details, further reading main.rs and Config.toml.
Example of config.toml
# Configuration file of datafusion-server
[server]
port = 4000
flight_grpc_port = 50051
base_url = "/"
data_dir = "./data"
plugin_dir = "./plugins"
[session]
default_keep_alive = 3600 # in seconds
upload_limit_size = 20 # MB
[log]
# trace, debug, info, warn, error
level = "debug"
Debug build and run
$ cargo run
datafusion-server with Python plugins feature
Require Python interpreter v3.7+
How to run
Example of Cargo.toml
[dependencies]
datafusion-server = { version = "0.19.3", features = ["plugin"] }
Debug build and run
$ cargo run
Release build with full optimization
Example of Cargo.toml
[profile.release]
opt-level = 'z'
strip = true
lto = "fat"
codegen-units = 1
[dependencies]
datafusion-server = { version = "0.19.3", features = ["plugin"] }
Build for release
$ cargo build --release
Clean workspace
$ cargo clean
Usage
Multiple data sources with SQL query
- Can be used many kind of data source format (Parquet, JSON, ndJSON, CSV, ...).
- Data can be retrieved from the local file system and from external REST services.
- Processing by JSONPath can be performed if necessary.
- Query execution across multiple data sources.
- SQL query engine uses Arrow DataFusion.
- Details https://arrow.apache.org/datafusion/user-guide/sql/index.html for more information.
- SQL query engine uses Arrow DataFusion.
- Arrow, JSON and CSV formats to response.
Example (local file)
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-d $'
{
"dataSources": [
{
"format": "csv",
"name": "sales",
"location": "file:///superstore.csv",
"options": {
"inferSchemaRows": 100,
"hasHeader": true
}
}
],
"query": {
"sql": "SELECT * FROM sales"
},
"response": {
"format": "json"
}
}'
Example (remote REST API)
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-H 'Accept: text/csv' \
-d $'
{
"dataSources": [
{
"format": "json",
"name": "population",
"location": "https://datausa.io/api/data?drilldowns=State&measures=Population",
"options": {
"jsonPath": "$.data[*]"
}
}
],
"query": {
"sql": "SELECT * FROM population WHERE \"ID Year\">=2020"
}
}'
Example (Python datasource connector plugin)
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-d $'
{
"dataSources": [
{
"format": "arrow",
"name": "example",
"location": "excel://example-workbook.xlsx/Sheet1",
"pluginOptions": {
"skipRows": 2
}
}
],
"query": {
"sql": "SELECT * FROM example"
}
}'
Dependencies
~63–86MB
~1.5M SLoC