24 releases (13 breaking)
0.13.0 | Oct 20, 2024 |
---|---|
0.11.0 | Sep 12, 2024 |
0.8.2 | Jul 27, 2024 |
0.3.0 | Mar 18, 2024 |
0.0.0 | Jan 11, 2023 |
#174 in Math
299 downloads per month
Used in spenso
2.5MB
59K
SLoC
Symbolica ⊆ Modern Computer Algebra
Symbolica is a blazing fast computer algebra system for Python and Rust, born of a need to push the boundaries of computations in science and enterprise. Check out the live Jupyter Notebook demo!
For documentation and more, see symbolica.io.
Quick Example
Symbolica allows you to build and manipulate mathematical expressions, for example from a Jupyter Notebook:
You are able to perform these operations from the comfort of a programming language that you (probably) already know, by using Symbolica's bindings to Python and Rust:
Installation
Visit the Get Started page for detailed installation instructions.
Python
Symbolica can be installed for Python >3.5 using pip
:
pip install symbolica
Rust
If you want to use Symbolica as a library in Rust, simply include it in the Cargo.toml
:
[dependencies]
symbolica = "0.13"
Examples
Below we list some examples of the features of Symbolica. Check the guide for a complete overview.
Pattern matching
Variables ending with a _
are wildcards that match to any subexpression.
In the following example we try to match the pattern f(w1_,w2_)
:
from symbolica import *
x, y, w1_, w2_, f = S('x','y','w1_','w2_', 'f')
e = f(3,x)*y**2+5
r = e.replace_all(f(w1_,w2_), f(w1_ - 1, w2_**2))
print(r)
which yields y^2*f(2,x^2)+5
.
Solving a linear system
Solve a linear system in x
and y
with a parameter c
:
from symbolica import *
x, y, c, f = S('x', 'y', 'c', 'f')
x_r, y_r = Expression.solve_linear_system(
[f(c)*x + y + c, y + c**2], [x, y])
print('x =', x_r, ', y =', y_r)
which yields x = (-c+c^2)*f(c)^-1
and y = -c^2
.
Series expansion
Perform a series expansion in x
:
from symbolica import *
e = E('exp(5+x)/(1-x)').series(S('x'), 0, 3)
print(e)
which yields (exp(5))+(2*exp(5))*x+(5/2*exp(5))*x^2+(8/3*exp(5))*x^3+𝒪(x^4)
.
Rational arithmetic
Symbolica is world-class in rational arithmetic, outperforming Mathematica, Maple, Form, Fermat, and other computer algebra packages. Simply convert an expression to a rational polynomial:
from symbolica import *
p = E('(x*y^2*5+5)^2/(2*x+5)+(x+4)/(6*x^2+1)').to_rational_polynomial()
print(p)
which yields (45+13*x+50*x*y^2+152*x^2+25*x^2*y^4+300*x^3*y^2+150*x^4*y^4)/(5+2*x+30*x^2+12*x^3)
.
Development
Follow the development and discussions on Zulip!
Dependencies
~14–26MB
~530K SLoC