15 releases (1 stable)
1.0.0 | Apr 12, 2024 |
---|---|
0.2.3 | Apr 5, 2023 |
0.2.0 | Feb 4, 2023 |
0.1.9 | Jan 31, 2023 |
#123 in Math
108 downloads per month
Used in 2 crates
655KB
2K
SLoC
rsparse
A Rust library for solving sparse linear systems using direct methods.
Data structures
- CSC matrix (
Sprs
) - Triplet matrix (
Trpl
)
Features
- Convert from dense
[Vec<f64>]
orVec<Vec<64>>
matrix to CSC sparse matrixSprs
- Convert from sparse to dense
Vec<Vec<f64>>
- Convert from a triplet format matrix
Trpl
to CSCSprs
- Sparse matrix addition [C=A+B]
- Sparse matrix multiplication [C=A*B]
- Transpose sparse matrices
- Solve sparse linear systems
Solvers
- lsolve: Solve a lower triangular system. Solves Lx=b where x and b are dense.
- ltsolve: Solve L’x=b where x and b are dense.
- usolve: Solve an upper triangular system. Solves Ux=b where x and b are dense
- utsolve: Solve U’x=b where x and b are dense
- cholsol: A\b solver using Cholesky factorization. Where A is a defined positive
Sprs
matrix and b is a dense vector - lusol: A\b solver using LU factorization. Where A is a square
Sprs
matrix and b is a dense vector - qrsol: A\b solver using QR factorization. Where A is a rectangular
Sprs
matrix and b is a dense vector
Examples
Basic matrix operations
use rsparse;
fn main() {
// Create a CSC sparse matrix A
let a = rsparse::data::Sprs{
// Maximum number of entries
nzmax: 5,
// number of rows
m: 3,
// number of columns
n: 3,
// Values
x: vec![1., 9., 9., 2., 9.],
// Indices
i: vec![1, 2, 2, 0, 2],
// Pointers
p: vec![0, 2, 3, 5]
};
// Import the same matrix from a dense structure
let mut a2 = rsparse::data::Sprs::new_from_vec(
&[
vec![0., 0., 2.],
vec![1., 0., 0.],
vec![9., 9., 9.]
]
);
// Check if they are the same
assert_eq!(a.nzmax, a2.nzmax);
assert_eq!(a.m,a2.m);
assert_eq!(a.n,a2.n);
assert_eq!(a.x,a2.x);
assert_eq!(a.i,a2.i);
assert_eq!(a.p,a2.p);
// Transform A to dense and print result
println!("\nA");
print_matrix(&a.to_dense());
// Transpose A
let at = rsparse::transpose(&a);
// Transform to dense and print result
println!("\nAt");
print_matrix(&at.to_dense());
// B = A + A'
let b = &a + &at;
// Transform to dense and print result
println!("\nB");
print_matrix(&b.to_dense());
// C = A * B
let c = &a * &b;
// Transform to dense and print result
println!("\nC");
print_matrix(&c.to_dense());
}
fn print_matrix(vec: &[Vec<f64>]) {
for row in vec {
println!("{:?}", row);
}
}
Output:
A
0 0 2
1 0 0
9 9 9
At
0 1 9
0 0 9
2 0 9
B
0 1 11
1 0 9
11 9 18
C
22 18 36
0 1 11
108 90 342
Solve a linear system
use rsparse;
fn main() {
// Arbitrary A matrix (dense)
let a = [
vec![8.2541e-01, 9.5622e-01, 4.6698e-01, 8.4410e-03, 6.3193e-01, 7.5741e-01, 5.3584e-01, 3.9448e-01],
vec![7.4808e-01, 2.0403e-01, 9.4649e-01, 2.5086e-01, 2.6931e-01, 5.5866e-01, 3.1827e-01, 2.9819e-02],
vec![6.3980e-01, 9.1615e-01, 8.5515e-01, 9.5323e-01, 7.8323e-01, 8.6003e-01, 7.5761e-01, 8.9255e-01],
vec![1.8726e-01, 8.9339e-01, 9.9796e-01, 5.0506e-01, 6.1439e-01, 4.3617e-01, 7.3369e-01, 1.5565e-01],
vec![2.8015e-02, 6.3404e-01, 8.4771e-01, 8.6419e-01, 2.7555e-01, 3.5909e-01, 7.6644e-01, 8.9905e-02],
vec![9.1817e-01, 8.6629e-01, 5.9917e-01, 1.9346e-01, 2.1960e-01, 1.8676e-01, 8.7020e-01, 2.7891e-01],
vec![3.1999e-01, 5.9988e-01, 8.7402e-01, 5.5710e-01, 2.4707e-01, 7.5652e-01, 8.3682e-01, 6.3145e-01],
vec![9.3807e-01, 7.5985e-02, 7.8758e-01, 3.6881e-01, 4.4553e-01, 5.5005e-02, 3.3908e-01, 3.4573e-01],
];
// Convert A to sparse
let mut a_sparse = rsparse::data::Sprs::new();
a_sparse.from_vec(&a);
// Generate arbitrary b vector
let mut b = [
0.4377,
0.7328,
0.1227,
0.1817,
0.2634,
0.6876,
0.8711,
0.4201
];
// Known solution:
/*
0.264678,
-1.228118,
-0.035452,
-0.676711,
-0.066194,
0.761495,
1.852384,
-0.282992
*/
// A*x=b -> solve for x -> place x in b
rsparse::lusol(&a_sparse, &mut b, 1, 1e-6);
println!("\nX");
println!("{:?}", &b);
}
Output:
X
[0.2646806068156303, -1.2280777288645675, -0.035491404094236435, -0.6766064748053932, -0.06619898266432682, 0.7615102544801993, 1.8522970972589123, -0.2830302118359591]
Documentation
Documentation is available at docs.rs.
Sources
- Davis, T. (2006). Direct Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718881
- CSparse: A Concise Sparse Matrix Package in C