1 unstable release
new 0.1.6 | Sep 29, 2024 |
---|---|
0.1.5 |
|
#99 in Math
350 downloads per month
580KB
9K
SLoC
[TOC]
RustedSciThe
is a Rust library for symbolic and numerical computing: parse string expressions in symbolic representation/symbolic function and compute symbolic derivatives or/and transform symbolic expressions into regular Rust functions, compute symbolic Jacobian and solve initial value problems for for stiff ODEs with BDF and Backward Euler methods
Content
Motivation
At first, this code was part of the KiThe crate, where it was supposed to serve for constructing analytical Jacobians for solving systems of equations of combustion, chemical kinetics and heat and mass transfer, as well as for displaying analytical expressions, but it soon became clear that it could be useful for a broader circle of users
Features
- parsing string expressions in symbolic to a symbolic expression/function
- symbolic/analytical differentiation of symbolic expressions/functions
- compare analytical derivative to a numerical one
- calculate vector of partial derivatives
- transform symbolic expressions/functions (also derivatives) into regular Rust functions
- calculate symbolic/analytical Jacobian and transform it into functional form
- Newton-Raphson method with analytical Jacobian
- Backward Eeuler method with analytical Jacobian
- Backward Differetiation Formula method (BDF) with analytical Jacobian (direct rewrite of python BDF solver from SciPy library)
- classical methods for non-stiff equations RK45 and DP
- Boundary Value Problem for ODE with Newton-Raphson method (now only consructing discretization and exect jacobian)
Usage
- parse string expression of multiple arguments to a symbolic representation/function and then differentiate it and "lamdufy" it (transform it into a regular rust function). Compare analytical derivative to a numerical one. Calculate the vector of partials derivatives.
// FUNCTION OF MULTIPLE VARIABLES
//parse expression from string to symbolic expression
let input = "exp(x)+log(y)";
// here you've got symbolic expression
let parsed_expression = Expr::parse_expression(input);
println!(" parsed_expression {}", parsed_expression);
// turn symbolic expression to a pretty human-readable string
let parsed_function = parsed_expression.sym_to_str("x");
println!("{}, sym to string: {} \n",input, parsed_function);
// return vec of all arguments
let all = parsed_expression.all_arguments_are_variables();
println!("all arguments are variables {:?}",all);
let variables = parsed_expression.extract_variables();
println!("variables {:?}",variables);
// differentiate with respect to x and y
let df_dx = parsed_expression.diff("x");
let df_dy = parsed_expression.diff("y");
println!("df_dx = {}, df_dy = {}", df_dx, df_dy);
//convert symbolic expression to a Rust function and evaluate the function
let args = vec!["x","y"];
let function_of_x_and_y = parsed_expression.lambdify( args );
let f_res = function_of_x_and_y( &[1.0, 2.0] );
println!("f_res = {}", f_res);
// or you dont want to pass arguments you can use lambdify_wrapped, arguments will be found inside function
let function_of_x_and_y = parsed_expression.lambdify_wrapped( );
let f_res = function_of_x_and_y( &[1.0, 2.0] );
println!("f_res2 = {}", f_res);
// evaluate function of 2 or more arguments using linspace for defining vectors of arguments
let start = vec![ 1.0, 1.0];
let end = vec![ 2.0, 2.0];
let result = parsed_expression.lamdified_from_linspace(start.clone(), end.clone(), 10);
println!("evaluated function of 2 arguments = {:?}", result);
// find vector of derivatives with respect to all arguments
let vector_of_derivatives = parsed_expression.diff_multi();
println!("vector_of_derivatives = {:?}, {}", vector_of_derivatives, vector_of_derivatives.len());
// compare numerical and analtical derivatives for a given linspace defined by start, end values and number of values.
// max_norm - maximum norm of the difference between numerical and analtical derivatives
let comparsion = parsed_expression.compare_num(start, end, 100, 1e-6);
println!(" result_of compare = {:?}", comparsion);
- the same for a function of one variable
// FUNTION OF 1 VARIABLE (processing of them has a slightly easier syntax then for multiple variables)
// function of 1 argument (1D examples)
let input = "log(x)";
let f = Expr::parse_expression(input);
//convert symbolic expression to a Rust function and evaluate the function
let f_res = f.lambdify1D()(1.0);
let df_dx = f.diff("x");
println!("df_dx = {}, log(1) = {}", df_dx, f_res);
let input = "x+exp(x)";
let f = Expr::parse_expression(input);
let f_res = f.lambdify1D()(1.0);
println!("f_res = {}", f_res);
let start = 0.0;
let end = 10 as f64;
let num_values = 100;
let max_norm = 1e-6;
// compare numerical and analtical derivatives for a given linspace defined by start, end values and number of values.
// a norm of the difference between the two of them is returned, and the answer is true if the norm is below max_norm
let (norm, res) = f.compare_num1D("x", start, end, num_values, max_norm);
println!("norm = {}, res = {}", norm, res);
- a symbolic function can be defined in a more straightforward way without parsing expression
// SOME USEFUL FEATURES
// first define symbolic variables
let vector_of_symbolic_vars = Expr::Symbols( "a, b, c");
println!("vector_of_symbolic_vars = {:?}", vector_of_symbolic_vars);
let (mut a,mut b, mut c) = (vector_of_symbolic_vars[0].clone(),
// consruct symbolic expression
vector_of_symbolic_vars[1].clone(), vector_of_symbolic_vars[2]. clone());
let mut symbolic_expression = a + Expr::exp(b * c);
println!("symbolic_expression = {:?}", symbolic_expression);
// if you want to change a variable inti constant:
let mut expression_with_const = symbolic_expression.set_variable("a", 1.0);
println!("expression_with_const = {:?}", expression_with_const);
let parsed_function = expression_with_const.sym_to_str("a");
println!("{}, sym to string:", parsed_function);
- calculate symbolic jacobian and evaluate it
// JACOBIAN
// instance of Jacobian structure
let mut Jacobian_instance = Jacobian::new();
// function of 2 or more arguments
let vec_of_expressions = vec![ "2*x^3+y".to_string(), "1.0".to_string()];
// set vector of functions
Jacobian_instance.set_funcvecor_from_str(vec_of_expressions);
// set vector of variables
// Jacobian_instance.set_varvecor_from_str("x, y");
Jacobian_instance.set_variables(vec!["x", "y"]);
// calculate symbolic jacobian
Jacobian_instance.calc_jacobian();
// transform into human...kind of readable form
Jacobian_instance.readable_jacobian();
// generate jacobian made of regular rust functions
Jacobian_instance.jacobian_generate(vec!["x", "y"]);
println!("Jacobian_instance: functions {:?}. Variables {:?}", Jacobian_instance.vector_of_functions, Jacobian_instance.vector_of_variables);
println!("Jacobian_instance: Jacobian {:?} readable {:?}.", Jacobian_instance.symbolic_jacobian, Jacobian_instance.readable_jacobian);
for i in 0.. Jacobian_instance.symbolic_jacobian.len() {
for j in 0.. Jacobian_instance.symbolic_jacobian[i].len() {
println!("Jacobian_instance: Jacobian {} row {} colomn {:?}", i, j, Jacobian_instance.symbolic_jacobian[i][j]);
}
}
// calculate element of jacobian (just for control)
let ij_element = Jacobian_instance.calc_ij_element(0, 0, vec!["x", "y"],vec![10.0, 2.0]) ;
println!("ij_element = {:?} \n", ij_element);
// evaluate jacobian to numerical values
Jacobian_instance.evaluate_func_jacobian(&vec![10.0, 2.0]);
println!("Jacobian = {:?} \n", Jacobian_instance.evaluated_jacobian);
// lambdify and evaluate function vector to numerical values
Jacobian_instance. lambdify_and_ealuate_funcvector(vec!["x", "y"], vec![10.0, 2.0]);
println!("function vector = {:?} \n", Jacobian_instance.evaluated_functions);
// or first lambdify
Jacobian_instance.lambdify_funcvector(vec!["x", "y"]);
// then evaluate
Jacobian_instance.evaluate_funvector_lambdified(vec![10.0, 2.0]);
println!("function vector after evaluate_funvector_lambdified = {:?} \n", Jacobian_instance.evaluated_functions);
// evaluate jacobian to nalgebra matrix format
Jacobian_instance.evaluate_func_jacobian_DMatrix(vec![10.0, 2.0]);
println!("Jacobian_DMatrix = {:?} \n", Jacobian_instance.evaluated_jacobian_DMatrix);
// evaluate function vector to nalgebra matrix format
Jacobian_instance.evaluate_funvector_lambdified_DVector(vec![10.0, 2.0]);
println!("function vector after evaluate_funvector_lambdified_DMatrix = {:?} \n", Jacobian_instance.evaluated_functions_DVector);
- set and calculate the system of (nonlinear) algebraic equations
//use the shortest way to solve system of equations
// first define system of equations and initial guess
let mut NR_instanse = NR::new();
let vec_of_expressions = vec![ "x^2+y^2-10".to_string(), "x-y-4".to_string()];
let initial_guess = vec![1.0, 1.0];
// solve
NR_instanse.eq_generate_from_str(vec_of_expressions,initial_guess, 1e-6, 100, 1e-6);
NR_instanse.solve();
println!("result = {:?} \n", NR_instanse.get_result().unwrap());
// or more verbose way...
// first define system of equations
let vec_of_expressions = vec![ "x^2+y^2-10".to_string(), "x-y-4".to_string()];
let mut Jacobian_instance = Jacobian::new();
Jacobian_instance.set_funcvecor_from_str(vec_of_expressions);
Jacobian_instance.set_variables(vec!["x", "y"]);
Jacobian_instance.calc_jacobian();
Jacobian_instance.jacobian_generate(vec!["x", "y"]);
Jacobian_instance.lambdify_funcvector(vec!["x", "y"]);
Jacobian_instance.readable_jacobian();
println!("Jacobian_instance: functions {:?}. Variables {:?}", Jacobian_instance.vector_of_functions, Jacobian_instance.vector_of_variables);
println!("Jacobian_instance: Jacobian {:?} readable {:?}. \n", Jacobian_instance.symbolic_jacobian, Jacobian_instance.readable_jacobian);
let initial_guess = vec![1.0, 1.0];
// in case you are interested in Jacobian value at initial guess
Jacobian_instance.evaluate_func_jacobian_DMatrix(initial_guess.clone());
Jacobian_instance.evaluate_funvector_lambdified_DVector(initial_guess.clone());
let guess_jacobian = (Jacobian_instance.evaluated_jacobian_DMatrix).clone();
println!("guess Jacobian = {:?} \n", guess_jacobian.try_inverse());
// defining NR method instance and solving
let mut NR_instanse = NR::new();
NR_instanse.set_equation_sysytem(Jacobian_instance, initial_guess, 1e-6, 100, 1e-6);
NR_instanse.solve();
println!("result = {:?} \n", NR_instanse.get_result().unwrap());
- set the system of ordinary differential equations (ODEs), compute the analytical Jacobian ana solve it with BDF method.
//create instance of structure for symbolic equation system and Jacobian
let mut Jacobian_instance = Jacobian::new();
// define argument andunknown variables
let x = Expr::Var("x".to_string()); // argument
let y = Expr::Var("y".to_string());
let z:Expr = Expr::Var("z".to_string());
//define equation system
let eq1:Expr = Expr::Const(-1.0 as f64)*z.clone() - (Expr::Const(-1.0 as f64)*y.clone() ).exp();
let eq2:Expr = y;
let eq_system = vec![eq1, eq2];
// set unkown variables
let values = vec![ "z".to_string(), "y".to_string()];
// set argument
let arg = "x".to_string();
// set method
let method = "BDF".to_string();
// set initial conditions
let t0 = 0.0;
let y0 = vec![1.0, 1.0];
let t_bound = 1.0;
// set solver parameters (optional)
let first_step = None;
let atol = 1e-5;
let rtol = 1e-5;
let max_step = 1e-3;
let jac_sparsity = None;
let vectorized = false;
// create instance of ODE solver and solve the system
let mut ODE_instance = ODEsolver::new_complex(
eq_system,
values,
arg,
method,
t0,
y0.into(),
t_bound,
max_step,
rtol,
atol,
jac_sparsity,
vectorized,
first_step
);
// here Jacobian is automatically generated and system is solved
ODE_instance.solve();
// plot the solution (optonally)
ODE_instance.plot_result();
//save results to file (optional)
ODE_instance.save_result();
- the laziest way to solve ODE with BDF
// set RHS of system as vector of strings
let RHS = vec!["-z-exp(-y)", "y"];
// parse RHS as symbolic expressions
let Equations = Expr::parse_vector_expression(RHS.clone());
let values = vec![ "z".to_string(), "y".to_string()];
println!("Equations = {:?}", Equations);
// set argument
let arg = "x".to_string();
// set method
let method = "BDF".to_string();
// set initial conditions
let t0 = 0.0;
let y0 = vec![1.0, 1.0];
let t_bound = 1.0;
// set solver parameters (optional)
let first_step = None;
let atol = 1e-5;
let rtol = 1e-5;
let max_step = 1e-3;
let jac_sparsity = None;
let vectorized = false;
// create instance of ODE solver and solve the system
let mut ODE_instance = ODEsolver::new_complex(
Equations,
values,
arg,
method,
t0,
y0.into(),
t_bound,
max_step,
rtol,
atol,
jac_sparsity,
vectorized,
first_step
);
ODE_instance.solve();
ODE_instance.plot_result();
- Backward Euler method
// Backward Euler method: slightly non-linear ODE
let RHS = vec!["-z-exp(-y)", "y"];
// parse RHS as symbolic expressions
let Equations = Expr::parse_vector_expression(RHS.clone());
let values = vec![ "z".to_string(), "y".to_string()];
println!("eq_system = {:?}", Equations);
let y0 = DVector::from_vec(vec![1.0, 1.0]);
let arg = "x".to_string();
let tolerance = 1e-2;
let max_iterations = 500;
let h = Some(1e-3);// this is the fixed time step version.
// let h = None; - this is the adaptive time step version
let t0 = 0.0;
let t_bound = 1.0;
let mut solver = BE::new();
solver.set_initial( Equations, values, arg, tolerance, max_iterations, h, t0, t_bound, y0);
println!("y = {:?}, initial_guess = {:?}", solver.newton.y,solver.newton.initial_guess);
solver.newton.eq_generate();
solver.solve();
let result = solver.get_result();
solver.plot_result();
- Non-stiff methods are also available
//Non-stiff equations: use ODE general api ODEsolver
// RK45 and Dormand-Prince methods are available
let RHS = vec!["-z-y", "y"];
// parse RHS as symbolic expressions
let Equations = Expr::parse_vector_expression(RHS.clone());
let values = vec![ "z".to_string(), "y".to_string()];
println!("Equations = {:?}", Equations);
// set argument
let arg = "x".to_string();
// set method
let method = "DOPRI".to_string(); // "RK45".to_string();
// set initial conditions
let t0 = 0.0;
let y0 = vec![1.0, 1.0];
let t_bound = 1.0;
// set solver parameters (optional)
let max_step = 1e-3;
// create instance of ODE solver and solve the system
let mut ODE_instance = ODEsolver::new_easy(
Equations,
values,
arg,
method,
t0,
y0.into(),
t_bound,
max_step,
);
ODE_instance.solve();
ODE_instance.plot_result();
- Discretization and jacobian for BVP
let RHS = vec!["-z-y", "y"];
// parse RHS as symbolic expressions
let Equations = Expr::parse_vector_expression(RHS.clone());
let values = vec![ "z".to_string(), "y".to_string()];
let arg = "x".to_string();
let n_steps = 3;
let h = 1e-4;
let BorderConditions = HashMap::from([
("z".to_string(), (0, 1000.0)),
("y".to_string(), (1, 333.0)),
]);
let mut Jacobian_instance = Jacobian::new();
// creating analytic discretized algebraic system, its functional representation, analytic Jacobian matrix and its functional representation
Jacobian_instance.generate_BVP(Equations, values, arg, n_steps, h, BorderConditions );
// analytic Jacobian matrix
let J = Jacobian_instance.symbolic_jacobian;
// its functional representation
let J_func = Jacobian_instance.function_jacobian_IVP_DMatrix;
// analytic discretized algebraic system,
let F = Jacobian_instance.vector_of_functions;
// its functional representation
let F_func = Jacobian_instance.lambdified_functions_IVP_DVector;
Testing
Our project is covered by tests and you can run them by standard command
cargo test
Contributing
If you have any questions, comments or want to contribute, please feel free to contact us at https://github.com/
To do
- Write basic functionality
- Write jacobians
- Write Newton-Raphson
- Write BDF
- Write Backward Euler
- Write some nonstiff methods
- Add indexed variables and matrices
- Add more numerical methods for ODEs
- Add BVP methods for stiff ODEs
Dependencies
~14MB
~244K SLoC