36 releases (16 stable)

1.9.0 Sep 28, 2024
1.6.2 Jul 23, 2024
1.0.0 Mar 30, 2024
0.9.0 Mar 17, 2024
0.1.0 Jun 22, 2021

#42 in Math

Download history 8/week @ 2024-08-21 14/week @ 2024-08-28 3/week @ 2024-09-04 23/week @ 2024-09-11 173/week @ 2024-09-18 417/week @ 2024-09-25 81/week @ 2024-10-02 28/week @ 2024-10-09 9/week @ 2024-10-16 9/week @ 2024-10-23 17/week @ 2024-10-30 13/week @ 2024-11-06 8/week @ 2024-11-13 15/week @ 2024-11-20 69/week @ 2024-11-27 234/week @ 2024-12-04

326 downloads per month
Used in 7 crates

MIT license

1.5MB
24K SLoC

Russell Lab - Scientific laboratory for linear algebra and numerical mathematics

documentation

This crate is part of Russell - Rust Scientific Library

Contents

Introduction

This library implements specialized mathematical functions (e.g., Bessel, Erf, Gamma) and functions to perform linear algebra computations (e.g., Matrix, Vector, Matrix-Vector, Eigen-decomposition, SVD). This library also implements a set of helpful function for comparing floating-point numbers, measuring computer time, reading table-formatted data, and more.

The code shall be implemented in native Rust code as much as possible. However, light interfaces ("wrappers") are implemented for some of the best tools available in numerical mathematics, including OpenBLAS and Intel MKL.

The code is organized in modules:

  • algo β€” algorithms that depend on the other modules (e.g, Lagrange interpolation)
  • base β€” "base" functionality to help other modules
  • check β€” functions to assist in unit and integration testing
  • math β€” mathematical (specialized) functions and constants
  • matrix β€” [NumMatrix] struct and associated functions
  • matvec β€” functions operating on matrices and vectors
  • vector β€” [NumVector] struct and associated functions

For linear algebra, the main structures are NumVector and NumMatrix, that are generic Vector and Matrix structures. The Matrix data is stored as column-major. The Vector and Matrix are f64 and Complex64 aliases of NumVector and NumMatrix, respectively.

The linear algebra functions currently handle only (f64, i32) pairs, i.e., accessing the (double, int) C functions. We also consider (Complex64, i32) pairs.

There are many functions for linear algebra, such as (for Real and Complex types):

  • Vector addition, copy, inner and outer products, norms, and more
  • Matrix addition, multiplication, copy, singular-value decomposition, eigenvalues, pseudo-inverse, inverse, norms, and more
  • Matrix-vector multiplication, and more
  • Solution of dense linear systems with symmetric or non-symmetric coefficient matrices, and more
  • Reading writing files, linspace, grid generators, Stopwatch, linear fitting, and more
  • Checking results, comparing floating point numbers, and verifying the correctness of derivatives; see russell_lab::check

Documentation

Installation

This crate depends on some non-rust high-performance libraries. See the main README file for the steps to install these dependencies.

Setting Cargo.toml up

Crates.io

πŸ‘† Check the crate version and update your Cargo.toml accordingly:

[dependencies]
russell_lab = "*"

Optional features

The following (Rust) features are available:

  • intel_mkl: Use Intel MKL instead of OpenBLAS

Note that the main README file presents the steps to compile the required libraries according to each feature.

🌟 Examples

This section illustrates how to use russell_lab. See also:

Running an example with Intel MKL

Consider the following code:

use russell_lab::*;

fn main() -> Result<(), StrError> {
    println!("Using Intel MKL  = {}", using_intel_mkl());
    println!("BLAS num threads = {}", get_num_threads());
    set_num_threads(2);
    println!("BLAS num threads = {}", get_num_threads());
    Ok(())
}

First, run the example without Intel MKL (default):

cargo run --example base_auxiliary_blas

The output looks like this:

Using Intel MKL  = false
BLAS num threads = 24
BLAS num threads = 2

Second, run the code with the intel_mkl feature:

cargo run --example base_auxiliary_blas --features intel_mk

Then, the output looks like this:

Using Intel MKL  = true
BLAS num threads = 24
BLAS num threads = 2

Sorting small tuples

See the code

use russell_lab::base::{sort2, sort3, sort4};
use russell_lab::StrError;

fn main() -> Result<(), StrError> {
    // sorting slices with the standard function
    let mut u2 = vec![2.0, 1.0];
    let mut u3 = vec![3.0, 1.0, 2.0];
    let mut u4 = vec![3.0, 1.0, 4.0, 2.0];
    u2.sort_by(|a, b| a.partial_cmp(b).unwrap());
    u3.sort_by(|a, b| a.partial_cmp(b).unwrap());
    u4.sort_by(|a, b| a.partial_cmp(b).unwrap());
    println!("u2 = {:?}", u2);
    println!("u3 = {:?}", u3);
    println!("u4 = {:?}", u4);
    assert_eq!(&u2, &[1.0, 2.0]);
    assert_eq!(&u3, &[1.0, 2.0, 3.0]);
    assert_eq!(&u4, &[1.0, 2.0, 3.0, 4.0]);

    // sorting small tuples
    let mut v2 = (2.0, 1.0);
    let mut v3 = (3.0, 1.0, 2.0);
    let mut v4 = (3.0, 1.0, 4.0, 2.0);
    sort2(&mut v2);
    sort3(&mut v3);
    sort4(&mut v4);
    println!("v2 = {:?}", v2);
    println!("v3 = {:?}", v3);
    println!("v4 = {:?}", v4);
    assert_eq!(v2, (1.0, 2.0));
    assert_eq!(v3, (1.0, 2.0, 3.0));
    assert_eq!(v4, (1.0, 2.0, 3.0, 4.0));
    Ok(())
}

Check first and second derivatives

Check the implementation of the first and second derivatives of f(x) (illustrated below).

Inverted and shifted Runge's equation

See the code

use russell_lab::algo::NoArgs;
use russell_lab::check::{deriv1_approx_eq, deriv2_approx_eq};
use russell_lab::{StrError, Vector};

fn main() -> Result<(), StrError> {
    // f(x)
    let f = |x: f64, _: &mut NoArgs| Ok(1.0 / 2.0 - 1.0 / (1.0 + 16.0 * x * x));

    // g(x) = df/dx(x)
    let g = |x: f64, _: &mut NoArgs| Ok((32.0 * x) / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 2));

    // h(x) = dΒ²f/dxΒ²(x)
    let h = |x: f64, _: &mut NoArgs| {
        Ok((-2048.0 * f64::powi(x, 2)) / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 3)
            + 32.0 / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 2))
    };

    let xx = Vector::linspace(-2.0, 2.0, 9)?;
    let args = &mut 0;
    println!("{:>4}{:>23}{:>23}", "x", "df/dx", "dΒ²f/dxΒ²");
    for x in xx {
        let dfdx = g(x, args)?;
        let d2dfx2 = h(x, args)?;
        println!("{:>4}{:>23}{:>23}", x, dfdx, d2dfx2);
        deriv1_approx_eq(dfdx, x, args, 1e-10, f);
        deriv2_approx_eq(d2dfx2, x, args, 1e-9, f);
    }
    Ok(())
}

Output:

   x                  df/dx                dΒ²f/dxΒ²
  -2   -0.01514792899408284  -0.022255803368229403
-1.5   -0.03506208911614317   -0.06759718081851025
  -1   -0.11072664359861592   -0.30612660289029103
-0.5                  -0.64                 -2.816
   0                      0                     32
 0.5                   0.64                 -2.816
   1    0.11072664359861592   -0.30612660289029103
 1.5    0.03506208911614317   -0.06759718081851025
   2    0.01514792899408284  -0.022255803368229403

Bessel functions

Plotting the Bessel J0, J1, and J2 functions:

use plotpy::{Curve, Plot};
use russell_lab::math::{bessel_j0, bessel_j1, bessel_jn, GOLDEN_RATIO};
use russell_lab::{StrError, Vector};

const OUT_DIR: &str = "/tmp/russell_lab/";

fn main() -> Result<(), StrError> {
    // values
    let xx = Vector::linspace(0.0, 15.0, 101)?;
    let j0 = xx.get_mapped(|x| bessel_j0(x));
    let j1 = xx.get_mapped(|x| bessel_j1(x));
    let j2 = xx.get_mapped(|x| bessel_jn(2, x));
    // plot
    if false { // <<< remove this condition
    let mut curve_j0 = Curve::new();
    let mut curve_j1 = Curve::new();
    let mut curve_j2 = Curve::new();
    curve_j0.set_label("J0").draw(xx.as_data(), j0.as_data());
    curve_j1.set_label("J1").draw(xx.as_data(), j1.as_data());
    curve_j2.set_label("J2").draw(xx.as_data(), j2.as_data());
    let mut plot = Plot::new();
    let path = format!("{}/math_bessel_functions_1.svg", OUT_DIR);
    plot.add(&curve_j0)
        .add(&curve_j1)
        .add(&curve_j2)
        .grid_labels_legend("$x$", "$J_0(x),\\,J_1(x),\\,J_2(x)$")
        .set_figure_size_points(GOLDEN_RATIO * 280.0, 280.0)
        .save(&path)?;
    }
    Ok(())
}

Output:

Bessel functions

Linear fitting

Fit a line through a set of points. The line has slope m and intercepts the y axis at x=0 with y(x=0) = c.

use russell_lab::algo::linear_fitting;
use russell_lab::{approx_eq, StrError};

fn main() -> Result<(), StrError> {
    // model: c is the y value @ x = 0; m is the slope
    let x = [0.0, 1.0, 3.0, 5.0];
    let y = [1.0, 0.0, 2.0, 4.0];
    let (c, m) = linear_fitting(&x, &y, false)?;
    println!("c = {}, m = {}", c, m);
    approx_eq(c, 0.1864406779661015, 1e-15);
    approx_eq(m, 0.6949152542372882, 1e-15);
    Ok(())
}

Results:

Linear fitting

Chebyshev adaptive interpolation (given function)

This example illustrates the use of InterpChebyshev to interpolate data given a function.

See the code

Results:

Chebyshev interpolation (given function)

Chebyshev adaptive interpolation (given data)

This example illustrates the use of InterpChebyshev to interpolate discrete data.

See the code

Results:

Chebyshev interpolation (given data)

Chebyshev adaptive interpolation (given noisy data)

This example illustrates the use of InterpChebyshev to interpolate noisy data.

See the code

Results:

Chebyshev interpolation (given noisy data)

Lagrange interpolation

This example illustrates the use of InterpLagrange with at Chebyshev-Gauss-Lobatto grid to interpolate Runge's equation.

See the code

Results:

algo_interp_lagrange

Solution of a 1D PDE using spectral collocation

This example illustrates the solution of a 1D PDE using the spectral collocation method. It employs the InterpLagrange struct.

dΒ²u     du          x
β€”β€”β€” - 4 β€”β€” + 4 u = e  + C
dxΒ²     dx

    -4 e
C = β€”β€”β€”β€”β€”β€”
    1 + eΒ²

x ∈ [-1, 1]

Boundary conditions:

u(-1) = 0  and  u(1) = 0

Reference solution:

        x   sinh(1)  2x   C
u(x) = e  - β€”β€”β€”β€”β€”β€”β€” e   + β€”
            sinh(2)       4

See the code

Results:

algo_lorene_1d_pde_spectral_collocation

Numerical integration: perimeter of ellipse

use russell_lab::algo::Quadrature;
use russell_lab::math::{elliptic_e, PI};
use russell_lab::{approx_eq, StrError};

fn main() -> Result<(), StrError> {
    //  Determine the perimeter P of an ellipse of length 2 and width 1
    //
    //      2Ο€
    //     ⌠   ____________________
    // P = β”‚ \β•± ΒΌ sinΒ²(ΞΈ) + cosΒ²(ΞΈ)  dΞΈ
    //     ⌑
    //    0

    let mut quad = Quadrature::new();
    let args = &mut 0;
    let (perimeter, _) = quad.integrate(0.0, 2.0 * PI, args, |theta, _| {
        Ok(f64::sqrt(
            0.25 * f64::powi(f64::sin(theta), 2) + f64::powi(f64::cos(theta), 2),
        ))
    })?;
    println!("\nperimeter = {}", perimeter);

    // complete elliptic integral of the second kind E(0.75)
    let ee = elliptic_e(PI / 2.0, 0.75)?;

    // reference solution
    let ref_perimeter = 4.0 * ee;
    approx_eq(perimeter, ref_perimeter, 1e-14);
    Ok(())
}

Finding a local minimum and a root

This example finds the local minimum between 0.1 and 0.3 and the root between 0.3 and 0.4 for the function illustrated below

finding a local minimum

See the code

The output looks like:

x_optimal = 0.20000000003467466

Number of function evaluations   = 18
Number of Jacobian evaluations   = 0
Number of iterations             = 18
Error estimate                   = unavailable
Total computation time           = 6.11Β΅s

x_root = 0.3397874957748173

Number of function evaluations   = 10
Number of Jacobian evaluations   = 0
Number of iterations             = 9
Error estimate                   = unavailable
Total computation time           = 907ns

Finding all roots in an interval

This example employs a Chebyshev interpolant to find all roots of a function in an interval. The method uses adaptive interpolation followed by calculating the eigenvalues of the companion matrix. These eigenvalues equal the roots of the polynomial. After that, a simple Newton refining (polishing) algorithm is applied.

See the code

The output looks like:

N = 184
roots =
β”Œ                     ┐
β”‚ 0.04109147217011577 β”‚
β”‚  0.1530172326889439 β”‚
β”‚ 0.25340124027487965 β”‚
β”‚ 0.33978749525956276 β”‚
β”‚ 0.47590538542276967 β”‚
β”‚  0.5162732673126048 β”‚
β””                     β”˜
f @ roots =
β”Œ           ┐
β”‚  1.84E-08 β”‚
β”‚ -1.51E-08 β”‚
β”‚ -2.40E-08 β”‚
β”‚  9.53E-09 β”‚
β”‚ -1.16E-08 β”‚
β”‚ -5.80E-09 β”‚
β””           β”˜
refined roots =
β”Œ                     ┐
β”‚ 0.04109147155278252 β”‚
β”‚ 0.15301723213859994 β”‚
β”‚ 0.25340124149692184 β”‚
β”‚   0.339787495774806 β”‚
β”‚ 0.47590538689192813 β”‚
β”‚  0.5162732665558162 β”‚
β””                     β”˜
f @ refined roots =
β”Œ           ┐
β”‚  6.66E-16 β”‚
β”‚ -2.22E-16 β”‚
β”‚ -2.22E-16 β”‚
β”‚  1.33E-15 β”‚
β”‚  4.44E-16 β”‚
β”‚ -2.22E-16 β”‚
β””           β”˜

The function and the roots are illustrated in the figure below.

All roots in an interval

References

  1. Boyd JP (2002) Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding, SIAM Journal of Numerical Analysis, 40(5):1666-1682
  2. Boyd JP (2013) Finding the zeros of a univariate equation: proxy rootfinders, Chebyshev interpolation, and the companion matrix, SIAM Journal of Numerical Analysis, 55(2):375-396.
  3. Boyd JP (2014) Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles, SIAM, pp460

Computing the pseudo-inverse matrix

use russell_lab::{mat_pseudo_inverse, Matrix, StrError};

fn main() -> Result<(), StrError> {
    // set matrix
    let mut a = Matrix::from(&[
      [1.0, 0.0], //
      [0.0, 1.0], //
      [0.0, 1.0], //
    ]);
    let a_copy = a.clone();

    // compute pseudo-inverse matrix
    let mut ai = Matrix::new(2, 3);
    mat_pseudo_inverse(&mut ai, &mut a)?;

    // compare with solution
    let ai_correct = "β”Œ                ┐\n\
                      β”‚ 1.00 0.00 0.00 β”‚\n\
                      β”‚ 0.00 0.50 0.50 β”‚\n\
                      β””                β”˜";
    assert_eq!(format!("{:.2}", ai), ai_correct);

    // compute a β‹… ai
    let (m, n) = a.dims();
    let mut a_ai = Matrix::new(m, m);
    for i in 0..m {
        for j in 0..m {
            for k in 0..n {
                a_ai.add(i, j, a_copy.get(i, k) * ai.get(k, j));
            }
        }
    }

    // check: a β‹… ai β‹… a = a
    let mut a_ai_a = Matrix::new(m, n);
    for i in 0..m {
        for j in 0..n {
            for k in 0..m {
                a_ai_a.add(i, j, a_ai.get(i, k) * a_copy.get(k, j));
            }
        }
    }
    let a_ai_a_correct = "β”Œ           ┐\n\
                          β”‚ 1.00 0.00 β”‚\n\
                          β”‚ 0.00 1.00 β”‚\n\
                          β”‚ 0.00 1.00 β”‚\n\
                          β””           β”˜";
    assert_eq!(format!("{:.2}", a_ai_a), a_ai_a_correct);
    Ok(())
}

Matrix visualization

We can use the fantastic tool named vismatrix to visualize the pattern of non-zero values of a matrix. With vismatrix, we can click on each circle and investigate the numeric values as well.

The function mat_write_vismatrix writes the input data file for vismatrix.

See the code

After generating the "dot-smat" file, run the following command:

vismatrix /tmp/russell_lab/matrix_visualization.smat

Output:

Matrix visualization

Computing eigenvalues and eigenvectors

use russell_lab::*;

fn main() -> Result<(), StrError> {
    // set matrix
    let data = [[2.0, 0.0, 0.0], [0.0, 3.0, 4.0], [0.0, 4.0, 9.0]];
    let mut a = Matrix::from(&data);

    // allocate output arrays
    let m = a.nrow();
    let mut l_real = Vector::new(m);
    let mut l_imag = Vector::new(m);
    let mut v_real = Matrix::new(m, m);
    let mut v_imag = Matrix::new(m, m);

    // perform the eigen-decomposition
    mat_eigen(&mut l_real, &mut l_imag, &mut v_real, &mut v_imag, &mut a)?;

    // check results
    assert_eq!(
        format!("{:.1}", l_real),
        "β”Œ      ┐\n\
         β”‚ 11.0 β”‚\n\
         β”‚  1.0 β”‚\n\
         β”‚  2.0 β”‚\n\
         β””      β”˜"
    );
    assert_eq!(
        format!("{}", l_imag),
        "β”Œ   ┐\n\
         β”‚ 0 β”‚\n\
         β”‚ 0 β”‚\n\
         β”‚ 0 β”‚\n\
         β””   β”˜"
    );

    // check eigen-decomposition (similarity transformation) of a
    // symmetric matrix with real-only eigenvalues and eigenvectors
    let a_copy = Matrix::from(&data);
    let lam = Matrix::diagonal(l_real.as_data());
    let mut a_v = Matrix::new(m, m);
    let mut v_l = Matrix::new(m, m);
    let mut err = Matrix::filled(m, m, f64::MAX);
    mat_mat_mul(&mut a_v, 1.0, &a_copy, &v_real, 0.0)?;
    mat_mat_mul(&mut v_l, 1.0, &v_real, &lam, 0.0)?;
    mat_add(&mut err, 1.0, &a_v, -1.0, &v_l)?;
    approx_eq(mat_norm(&err, Norm::Max), 0.0, 1e-15);
    Ok(())
}

Cholesky factorization

use russell_lab::*;

fn main() -> Result<(), StrError> {
    // set matrix
    let sym = 0.0;
    #[rustfmt::skip]
    let mut a = Matrix::from(&[
        [  4.0,   sym,   sym],
        [ 12.0,  37.0,   sym],
        [-16.0, -43.0,  98.0],
    ]);

    // perform factorization
    mat_cholesky(&mut a, false)?;

    // define alias (for convenience)
    let l = &a;

    // compare with solution
    let l_correct = "β”Œ          ┐\n\
                     β”‚  2  0  0 β”‚\n\
                     β”‚  6  1  0 β”‚\n\
                     β”‚ -8  5  3 β”‚\n\
                     β””          β”˜";
    assert_eq!(format!("{}", l), l_correct);

    // check:  l β‹… lα΅€ = a
    let m = a.nrow();
    let mut l_lt = Matrix::new(m, m);
    for i in 0..m {
        for j in 0..m {
            for k in 0..m {
                l_lt.add(i, j, l.get(i, k) * l.get(j, k));
            }
        }
    }
    let l_lt_correct = "β”Œ             ┐\n\
                        β”‚   4  12 -16 β”‚\n\
                        β”‚  12  37 -43 β”‚\n\
                        β”‚ -16 -43  98 β”‚\n\
                        β””             β”˜";
    assert_eq!(format!("{}", l_lt), l_lt_correct);
    Ok(())
}

Read a table-formatted data file

The goal is to read the following file (clay-data.txt):

# Fujinomori clay test results

     sr        ea        er   # header
1.00000  -6.00000   0.10000   
2.00000   7.00000   0.20000   
3.00000   8.00000   0.20000   # << look at this line

# comments plus new lines are OK

4.00000   9.00000   0.40000   
5.00000  10.00000   0.50000   

# bye

The code below illustrates how to do it.

Each column (sr, ea, er) is accessible via the get method of the [HashMap].

use russell_lab::{read_table, StrError};
use std::collections::HashMap;
use std::env;
use std::path::PathBuf;

fn main() -> Result<(), StrError> {
    // get the asset's full path
    let root = PathBuf::from(env::var("CARGO_MANIFEST_DIR").unwrap());
    let full_path = root.join("data/tables/clay-data.txt");

    // read the file
    let labels = &["sr", "ea", "er"];
    let table: HashMap<String, Vec<f64>> = read_table(&full_path, Some(labels))?;

    // check the columns
    assert_eq!(table.get("sr").unwrap(), &[1.0, 2.0, 3.0, 4.0, 5.0]);
    assert_eq!(table.get("ea").unwrap(), &[-6.0, 7.0, 8.0, 9.0, 10.0]);
    assert_eq!(table.get("er").unwrap(), &[0.1, 0.2, 0.2, 0.4, 0.5]);
    Ok(())
}

About the column major representation

Only the COL-MAJOR representation is considered here.

    β”Œ     ┐  row_major = {0, 3,
    β”‚ 0 3 β”‚               1, 4,
A = β”‚ 1 4 β”‚               2, 5};
    β”‚ 2 5 β”‚
    β””     β”˜  col_major = {0, 1, 2,
    (m Γ— n)               3, 4, 5}

Aα΅’β±Ό = col_major[i + jΒ·m] = row_major[iΒ·n + j]
        ↑
COL-MAJOR IS ADOPTED HERE

The main reason to use the col-major representation is to make the code work better with BLAS/LAPACK written in Fortran. Although those libraries have functions to handle row-major data, they usually add an overhead due to temporary memory allocation and copies, including transposing matrices. Moreover, the row-major versions of some BLAS/LAPACK libraries produce incorrect results (notably the DSYEV).

Benchmarks

Need to install:

cargo install cargo-criterion

Run the benchmarks with:

bash ./zscripts/benchmark.bash

Chebyshev polynomial evaluation

Comparison of the performances of InterpChebyshev::eval implementing the Clenshaw algorithm and InterpChebyshev::eval_using_trig using the trigonometric functions.

Chebyshev evaluation (small)

Chebyshev evaluation (large)

Jacobi Rotation versus LAPACK DSYEV

Comparison of the performances of mat_eigen_sym_jacobi (Jacobi rotation) versus mat_eigen_sym (calling LAPACK DSYEV).

Jacobi Rotation versus LAPACK DSYEV (1-5)

Jacobi Rotation versus LAPACK DSYEV (1-32)

Notes for developers

  • The c_code directory contains a thin wrapper to the BLAS libraries (OpenBLAS or Intel MKL)
  • The c_code directory also contains a wrapper to the C math functions
  • The build.rs file uses the crate cc to build the C-wrappers

Dependencies