#bioinformatics #genomics #motif #pssm #matrix


A lightweight platform-accelerated library for biological motif scanning using position weight matrices

6 releases (breaking)

0.5.1 Aug 31, 2023
0.5.0 Aug 31, 2023
0.4.0 Aug 10, 2023
0.3.0 Jun 25, 2023
0.1.1 May 4, 2023

#16 in Biology

Download history 7/week @ 2023-06-11 20/week @ 2023-06-18 50/week @ 2023-06-25 39/week @ 2023-07-02 25/week @ 2023-07-09 23/week @ 2023-07-16 16/week @ 2023-07-23 7/week @ 2023-07-30 56/week @ 2023-08-06 35/week @ 2023-08-13 70/week @ 2023-08-20 81/week @ 2023-08-27 44/week @ 2023-09-03 16/week @ 2023-09-10 15/week @ 2023-09-17 12/week @ 2023-09-24

90 downloads per month
Used in 3 crates

MIT license


🎼🧬 lightmotif Star me

A lightweight platform-accelerated library for biological motif scanning using position weight matrices.

Actions Coverage License Crate Docs Source Mirror GitHub issues Changelog

🗺️ Overview

Motif scanning with position weight matrices (also known as position-specific scoring matrices) is a robust method for identifying motifs of fixed length inside a biological sequence. They can be used to identify transcription factor binding sites in DNA, or protease cleavage site in polypeptides. Position weight matrices are often viewed as sequence logos:


The lightmotif library provides a Rust crate to run very efficient searches for a motif encoded in a position weight matrix. The position scanning combines several techniques to allow high-throughput processing of sequences:

  • Compile-time definition of alphabets and matrix dimensions.
  • Sequence symbol encoding for fast table look-ups, as implemented in HMMER[1] or MEME[2]
  • Striped sequence matrices to process several positions in parallel, inspired by Michael Farrar[3].
  • Vectorized matrix row look-up using permute instructions of AVX2.

Other crates from the ecosystem provide additional features if needed:

This is the Rust version, there is a Python package available as well.

💡 Example

use lightmotif::*;
use lightmotif::abc::Nucleotide;
use typenum::U32;

// Create a count matrix from an iterable of motif sequences
let counts = CountMatrix::<Dna>::from_sequences(&[

// Create a PSSM with 0.1 pseudocounts and uniform background frequencies.
let pssm = counts.to_freq(0.1).to_scoring(None);

/// Create a pipeline to run tasks with platform acceleration
let pli = Pipeline::dispatch();

// Use the pipeline to encode the target sequence into a striped matrix
let encoded = pli.encode(seq).unwrap();
let mut striped = pli.stripe(encoded);

// Use the pipeline to compute scores for every position of the matrix.
let scores = pli.score(&striped, &pssm);

// Scores can be extracted into a Vec<f32>, or indexed directly.
let v = scores.to_vec();
assert_eq!(scores[0], -23.07094);
assert_eq!(v[0], -23.07094);

// The highest scoring position can be searched with a pipeline as well.
let best = pli.argmax(&scores).unwrap();
assert_eq!(best, 18);

This example uses a dynamic dispatch pipeline, which selects the best available backend (AVX2, SSE2, NEON, or a generic implementation) depending on the local platform.

⏱️ Benchmarks

Both benchmarks use the MX000001 motif from PRODORIC[5], and the complete genome of an Escherichia coli K12 strain. Benchmarks were run on a i7-10710U CPU running @1.10GHz, compiled with --target-cpu=native.

  • Score every position of the genome with the motif weight matrix:

    test bench_avx2    ... bench:   4,510,794 ns/iter (+/-     9,570) = 1029 MB/s
    test bench_sse2    ... bench:  26,773,537 ns/iter (+/-    57,891) =  173 MB/s
    test bench_generic ... bench: 317,731,004 ns/iter (+/- 2,567,370) =   14 MB/s
  • Find the highest-scoring position for a motif in a 10kb sequence (compared to the PSSM algorithm implemented in bio::pattern_matching::pssm):

    test bench_avx2    ... bench:      12,797 ns/iter (+/-   380) = 781 MB/s
    test bench_sse2    ... bench:      62,597 ns/iter (+/-    43) = 159 MB/s
    test bench_generic ... bench:     671,900 ns/iter (+/- 1,150) =  14 MB/s
    test bench_bio     ... bench:   1,193,911 ns/iter (+/- 2,519) =   8 MB/s

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

📋 Changelog

This project adheres to Semantic Versioning and provides a changelog in the Keep a Changelog format.

⚖️ License

This library is provided under the open-source MIT license.

This project was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

📚 References

  • Eddy, Sean R. ‘Accelerated Profile HMM Searches’. PLOS Computational Biology 7, no. 10 (20 October 2011): e1002195. doi:10.1371/journal.pcbi.1002195.
  • Grant, Charles E., Timothy L. Bailey, and William Stafford Noble. ‘FIMO: Scanning for Occurrences of a given Motif’. Bioinformatics 27, no. 7 (1 April 2011): 1017–18. doi:10.1093/bioinformatics/btr064.
  • Farrar, Michael. ‘Striped Smith–Waterman Speeds Database Searches Six Times over Other SIMD Implementations’. Bioinformatics 23, no. 2 (15 January 2007): 156–61. doi:10.1093/bioinformatics/btl582.
  • Touzet, Hélène, and Jean-Stéphane Varré. ‘Efficient and Accurate P-Value Computation for Position Weight Matrices’. Algorithms for Molecular Biology 2, no. 1 (2007): 1–12. doi:10.1186/1748-7188-2-15.
  • Dudek, Christian-Alexander, and Dieter Jahn. ‘PRODORIC: State-of-the-Art Database of Prokaryotic Gene Regulation’. Nucleic Acids Research 50, no. D1 (7 January 2022): D295–302. doi:10.1093/nar/gkab1110.