1 unstable release
new 0.1.0-alpha.1 | Apr 12, 2025 |
---|
#2267 in Math
73 downloads per month
1MB
20K
SLoC
SciRS2: Scientific Computing in Rust
SciRS2 is a comprehensive scientific computing library for Rust, inspired by SciPy and designed to provide a complete ecosystem for numerical computation, statistical analysis, and scientific algorithms.
Overview
This is the main SciRS2 crate, which provides a convenient facade over the ecosystem of specialized sub-crates. Each sub-crate focuses on a specific domain of scientific computing, while this crate re-exports their functionality in a unified interface.
Features
SciRS2 brings together a large collection of scientific computing tools:
- Core Utilities: Common functionality through
scirs2-core
- Linear Algebra: Matrix operations, decompositions, and solvers via
scirs2-linalg
- Statistics: Distributions, hypothesis testing, and statistical functions in
scirs2-stats
- Optimization: Minimization, root finding, and curve fitting with
scirs2-optimize
- Integration: Numerical integration and ODE solvers through
scirs2-integrate
- Interpolation: Various interpolation methods in
scirs2-interpolate
- Special Functions: Mathematical special functions via
scirs2-special
- Fourier Analysis: FFT and related transforms in
scirs2-fft
- Signal Processing: Filtering, convolution, and spectral analysis in
scirs2-signal
- Sparse Matrices: Efficient sparse matrix formats and operations via
scirs2-sparse
- Spatial Algorithms: Spatial data structures and algorithms in
scirs2-spatial
- Image Processing: Multidimensional image processing in
scirs2-ndimage
- Machine Learning: Clustering, metrics, and neural networks via multiple sub-crates
- Data I/O: Reading and writing various scientific data formats via
scirs2-io
- And more: Various additional modules for specific applications
Usage
Add the following to your Cargo.toml
:
[dependencies]
scirs2 = "0.1.0" # Enable only the features you need
You can enable only the features you need:
[dependencies]
scirs2 = { version = "0.1.0", features = ["linalg", "stats", "optimize"] }
Basic usage examples:
use scirs2::prelude::*;
use ndarray::array;
fn main() -> CoreResult<()> {
// Linear algebra operations
let a = array![[1., 2.], [3., 4.]];
let eig = linalg::eigen::eig(&a)?;
println!("Eigenvalues: {:?}", eig.eigenvalues);
println!("Eigenvectors: {:?}", eig.eigenvectors);
// Statistical distributions
let normal = stats::distributions::normal::Normal::new(0.0, 1.0)?;
let samples = normal.random_sample(1000, None)?;
let mean = stats::descriptive::mean(&samples)?;
let std_dev = stats::descriptive::std_dev(&samples, None)?;
println!("Sample mean: {}, std dev: {}", mean, std_dev);
// Optimization
let f = |x: &[f64]| x[0].powi(2) + x[1].powi(2);
let df = |x: &[f64], grad: &mut [f64]| {
grad[0] = 2.0 * x[0];
grad[1] = 2.0 * x[1];
};
let result = optimize::unconstrained::minimize(
f, df, &[1.0, 1.0], "L-BFGS-B", None, None)?;
println!("Optimization result: {:?}", result);
// Special functions
let gamma = special::gamma::gamma(5.0)?;
println!("Gamma(5) = {}", gamma);
// FFT
let signal = array![1.0, 2.0, 3.0, 4.0];
let fft_result = fft::fft(&signal)?;
println!("FFT result: {:?}", fft_result);
Ok(())
}
Feature Flags
This crate uses feature flags to control which sub-crates are included:
core
: Core utilities (always enabled)linalg
: Linear algebra operationsstats
: Statistical functions and distributionsoptimize
: Optimization algorithmsintegrate
: Numerical integration and ODEsinterpolate
: Interpolation methodsfft
: Fast Fourier Transformspecial
: Special functionssignal
: Signal processingsparse
: Sparse matricesspatial
: Spatial algorithmsndimage
: N-dimensional image processingcluster
: Clustering algorithmsdatasets
: Dataset utilitiesio
: I/O utilitiesneural
: Neural networksoptim
: Optimization for machine learninggraph
: Graph algorithmstransform
: Data transformationmetrics
: Evaluation metricstext
: Text processingvision
: Computer visionseries
: Time series analysisautograd
: Automatic differentiation
Architecture
SciRS2 follows a modular architecture where each domain of scientific computing is implemented in a separate crate. This main crate provides a unified interface by re-exporting their functionality.
Architecture Benefits
- Modular Development: Each domain can be developed and tested independently
- Reduced Compilation Time: Users can include only the features they need
- Flexible Dependencies: Sub-crates can have different dependency requirements
- Focused Documentation: Each domain has its own focused documentation
Module Structure
scirs2
├── core // Core utilities
├── linalg // Linear algebra
├── stats // Statistics
├── optimize // Optimization
├── integrate // Integration
├── interpolate // Interpolation
├── fft // Fourier transforms
├── special // Special functions
├── signal // Signal processing
├── sparse // Sparse matrices
├── spatial // Spatial algorithms
├── ndimage // Image processing
└── ... // Other modules
Performance
SciRS2 is designed with performance in mind:
- Uses optimized BLAS and LAPACK implementations where appropriate
- Leverages SIMD operations when available
- Provides parallel processing capabilities
- Uses memory-efficient algorithms
- Employs caching for expensive computations
Contributing
See the CONTRIBUTING.md file for contribution guidelines.
License
This project is licensed under the Apache License, Version 2.0 - see the LICENSE file for details.
Dependencies
~6–17MB
~237K SLoC