1 unstable release
new 0.1.0-alpha.1 | Apr 12, 2025 |
---|
#2289 in Math
1MB
16K
SLoC
SciRS2 Clustering Module
A comprehensive clustering module for the SciRS2 scientific computing library in Rust. This crate provides implementations of various clustering algorithms with a focus on performance, flexibility, and idiomatic Rust code.
Features
-
Vector Quantization
- K-means clustering with customizable initialization
- K-means++ smart initialization method
- Vector quantization utilities
-
Hierarchical Clustering
- Agglomerative clustering with multiple linkage methods:
- Single linkage (minimum distance)
- Complete linkage (maximum distance)
- Average linkage
- Ward's method (minimizes variance)
- Centroid method (distance between centroids)
- Median method
- Weighted average
- Dendrogram utilities and flat cluster extraction
- Cluster distance metrics (Euclidean, Manhattan, Chebyshev, Correlation)
- Agglomerative clustering with multiple linkage methods:
-
Density-Based Clustering
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
- Support for custom distance metrics
Usage
Add this to your Cargo.toml
:
[dependencies]
scirs2-cluster = "0.1.0"
ndarray = "0.15"
K-means Example
use ndarray::{Array2, ArrayView2};
use scirs2_cluster::vq::kmeans;
// Create a dataset
let data = Array2::from_shape_vec((6, 2), vec![
1.0, 2.0,
1.2, 1.8,
0.8, 1.9,
3.7, 4.2,
3.9, 3.9,
4.2, 4.1,
]).unwrap();
// Run k-means with k=2
let (centroids, labels) = kmeans(data.view(), 2, None, None, None).unwrap();
// Print the results
println!("Centroids: {:?}", centroids);
println!("Cluster assignments: {:?}", labels);
Hierarchical Clustering Example
use ndarray::{Array2, ArrayView2};
use scirs2_cluster::hierarchy::{linkage, fcluster, LinkageMethod, Metric};
// Create a dataset
let data = Array2::from_shape_vec((6, 2), vec![
1.0, 2.0,
1.2, 1.8,
0.8, 1.9,
3.7, 4.2,
3.9, 3.9,
4.2, 4.1,
]).unwrap();
// Calculate linkage matrix using Ward's method
let linkage_matrix = linkage(data.view(), LinkageMethod::Ward, Metric::Euclidean).unwrap();
// Form flat clusters by cutting the dendrogram
let num_clusters = 2;
let labels = fcluster(&linkage_matrix, num_clusters, None).unwrap();
// Print the results
println!("Cluster assignments: {:?}", labels);
DBSCAN Example
use ndarray::{Array2, ArrayView2};
use scirs2_cluster::density::{dbscan, labels};
use scirs2_spatial::distance::DistanceMetric;
// Create a dataset
let data = Array2::from_shape_vec((8, 2), vec![
1.0, 2.0, // Cluster 1
1.5, 1.8, // Cluster 1
1.3, 1.9, // Cluster 1
5.0, 7.0, // Cluster 2
5.1, 6.8, // Cluster 2
5.2, 7.1, // Cluster 2
0.0, 10.0, // Noise
10.0, 0.0, // Noise
]).unwrap();
// Run DBSCAN with eps=0.8 and min_samples=2
let cluster_labels = dbscan(data.view(), 0.8, 2, Some(DistanceMetric::Euclidean)).unwrap();
// Count noise points
let noise_count = cluster_labels.iter().filter(|&&label| label == labels::NOISE).count();
// Print the results
println!("Cluster assignments: {:?}", cluster_labels);
println!("Number of noise points: {}", noise_count);
License
This project is licensed under the terms specified in the repository root.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Dependencies
~7.5MB
~132K SLoC