1 unstable release
new 0.1.0-alpha.1 | Apr 12, 2025 |
---|
#4 in #forecasting
1MB
17K
SLoC
SciRS2 Series
Time series analysis module for the SciRS2 scientific computing library. This module provides tools for analyzing, decomposing, and forecasting time series data.
Features
- Time Series Analysis: Correlation, autocorrelation, and partial autocorrelation analysis
- Decomposition: Techniques for decomposing time series into trend, seasonal, and residual components
- Forecasting: Methods for predicting future values of time series
- Feature Extraction: Extraction of meaningful features from time series data
- Utility Functions: Helper functions for time series manipulation
Usage
Add the following to your Cargo.toml
:
[dependencies]
scirs2-series = { workspace = true }
Basic usage examples:
use scirs2_series::{utils, decomposition, forecasting, features};
use scirs2_core::error::CoreResult;
use ndarray::{Array1, array};
// Create a simple time series
fn time_series_example() -> CoreResult<()> {
// Sample time series data
let data = array![10.0, 11.0, 12.0, 11.5, 11.0, 10.5, 11.2, 12.5, 13.0, 12.7,
12.0, 11.8, 12.2, 13.5, 14.0, 13.5, 13.0, 12.5, 13.0, 14.5];
// Autocorrelation
let acf = utils::autocorrelation(&data, 5)?;
println!("Autocorrelation: {:?}", acf);
// Partial autocorrelation
let pacf = utils::partial_autocorrelation(&data, 5)?;
println!("Partial autocorrelation: {:?}", pacf);
// Decompose time series
let decomposition = decomposition::seasonal_decompose(&data, 4, None, None)?;
println!("Trend: {:?}", decomposition.trend);
println!("Seasonal: {:?}", decomposition.seasonal);
println!("Residual: {:?}", decomposition.resid);
// Extract features
let mean = features::mean(&data)?;
let std_dev = features::standard_deviation(&data)?;
let min = features::minimum(&data)?;
let max = features::maximum(&data)?;
println!("Time series features:");
println!("Mean: {}", mean);
println!("Standard deviation: {}", std_dev);
println!("Min: {}", min);
println!("Max: {}", max);
// Forecast future values (simple moving average)
let forecast = forecasting::moving_average_forecast(&data, 3, 5)?;
println!("Forecast (next 5 points): {:?}", forecast);
Ok(())
}
Components
Time Series Utilities
Functions for time series analysis:
use scirs2_series::utils::{
autocorrelation, // Calculate autocorrelation function
partial_autocorrelation, // Calculate partial autocorrelation function
cross_correlation, // Calculate cross-correlation between two series
lag_plot, // Create lag plot data
seasonal_plot, // Create seasonal plot data
difference, // Difference a time series
seasonal_difference, // Apply seasonal differencing
inverse_difference, // Invert differencing
lag_series, // Create lagged versions of a time series
};
Decomposition
Methods for time series decomposition:
use scirs2_series::decomposition::{
seasonal_decompose, // Seasonal decomposition (additive or multiplicative)
stl_decompose, // STL decomposition (Seasonal-Trend decomposition using LOESS)
hp_filter, // Hodrick-Prescott filter
};
Forecasting
Time series forecasting methods:
use scirs2_series::forecasting::{
moving_average_forecast, // Moving average forecast
exponential_smoothing, // Simple exponential smoothing
double_exponential_smoothing, // Double exponential smoothing (Holt's method)
triple_exponential_smoothing, // Triple exponential smoothing (Holt-Winters method)
arima_forecast, // ARIMA forecast
sarima_forecast, // Seasonal ARIMA forecast
};
Feature Extraction
Functions for extracting features from time series:
use scirs2_series::features::{
// Basic Statistics
mean, // Calculate mean
standard_deviation, // Calculate standard deviation
minimum, // Find minimum value
maximum, // Find maximum value
// Trend Features
trend_strength, // Calculate trend strength
seasonality_strength, // Calculate seasonality strength
// Complexity Measures
entropy, // Calculate entropy
approximate_entropy, // Calculate approximate entropy
sample_entropy, // Calculate sample entropy
// Spectral Features
spectral_entropy, // Calculate spectral entropy
dominant_frequency, // Find dominant frequency
// Other Features
turning_points, // Count turning points
crossing_points, // Count crossing points
autocorrelation_features, // Extract autocorrelation features
};
Advanced Features
STL Decomposition
Seasonal-Trend decomposition using LOESS (STL):
use scirs2_series::decomposition::stl_decompose;
use ndarray::Array1;
// Sample time series
let data = Array1::from_vec(vec![/* time series data */]);
// STL decomposition parameters
let period = 12; // For monthly data
let robust = true;
let seasonal_degree = 1;
let seasonal_jump = 1;
let seasonal_window = 13;
let trend_degree = 1;
let trend_jump = 1;
let trend_window = 21;
let inner_iter = 2;
let outer_iter = 1;
// Perform STL decomposition
let decomposition = stl_decompose(&data, period, robust,
seasonal_degree, seasonal_jump, seasonal_window,
trend_degree, trend_jump, trend_window,
inner_iter, outer_iter).unwrap();
println!("Trend component: {:?}", decomposition.trend);
println!("Seasonal component: {:?}", decomposition.seasonal);
println!("Residual component: {:?}", decomposition.resid);
ARIMA Forecasting
Autoregressive Integrated Moving Average (ARIMA) model:
use scirs2_series::forecasting::arima_forecast;
use ndarray::Array1;
// Sample time series
let data = Array1::from_vec(vec![/* time series data */]);
// ARIMA parameters
let p = 1; // AR order
let d = 1; // Differencing order
let q = 1; // MA order
// Forecast horizon
let steps = 10;
// Perform ARIMA forecast
let (forecast, conf_intervals) = arima_forecast(&data, p, d, q, steps, 0.95).unwrap();
println!("ARIMA({},{},{}) forecast: {:?}", p, d, q, forecast);
println!("95% confidence intervals: {:?}", conf_intervals);
Contributing
See the CONTRIBUTING.md file for contribution guidelines.
License
This project is licensed under the Apache License, Version 2.0 - see the LICENSE file for details.
Dependencies
~7.5MB
~132K SLoC