19 releases (6 breaking)

new 0.8.1 Jan 7, 2025
0.8.0 Dec 23, 2024
0.7.0 Nov 25, 2024
0.6.3 Nov 20, 2024
0.2.0 Jun 5, 2024

#107 in Machine learning

Download history 5/week @ 2024-09-18 9/week @ 2024-09-25 2/week @ 2024-10-02 9/week @ 2024-10-09 764/week @ 2024-10-16 481/week @ 2024-10-23 73/week @ 2024-10-30 361/week @ 2024-11-06 49/week @ 2024-11-13 317/week @ 2024-11-20 44/week @ 2024-11-27 12/week @ 2024-12-04 19/week @ 2024-12-11 120/week @ 2024-12-18 30/week @ 2024-12-25

182 downloads per month
Used in augurs

MIT/Apache

75KB
1.5K SLoC

High level forecasting API for augurs

augurs-forecaster contains a high-level API for training and predicting with time series models. It currently allows you to combine a model with a set of transformations (such as imputation of missing data, min-max scaling, and log/logit transforms) and fit the model on the transformed data, automatically handling back-transformation of forecasts and prediction intervals.

Usage

First add this crate and any required model crates to your Cargo.toml:

[dependencies]
augurs-ets = { version = "*", features = ["mstl"] }
augurs-forecaster = "*"
augurs-mstl = "*"
use augurs::{
    ets::{AutoETS, trend::AutoETSTrendModel},
    forecaster::{
        Forecaster, Transformer,
        transforms::{LinearInterpolator, Logit, MinMaxScaler},
    },
    mstl::MSTLModel
};

let data = &[
    1.0, 1.2, 1.4, 1.5, f64::NAN, 1.4, 1.2, 1.5, 1.6, 2.0, 1.9, 1.8
];

// Set up the model. We're going to use an MSTL model to handle
// multiple seasonalities, with a non-seasonal `AutoETS` model
// for the trend component.
// We could also use any model that implements `augurs_core::Fit`.
let ets = AutoETS::non_seasonal().into_trend_model();
let mstl = MSTLModel::new(vec![2], ets);

// Set up the transformers.
let transformers = vec![
    LinearInterpolator::new().boxed(),
    MinMaxScaler::new().boxed(),
    Logit::new().boxed(),
];

// Create a forecaster using the transforms.
let mut forecaster = Forecaster::new(mstl).with_transformers(transformers);

// Fit the forecaster. This will transform the training data by
// running the transforms in order, then fit the MSTL model.
forecaster.fit(&data).expect("model should fit");

// Generate some in-sample predictions with 95% prediction intervals.
// The forecaster will handle back-transforming them onto our original scale.
let in_sample = forecaster
    .predict_in_sample(0.95)
    .expect("in-sample predictions should work");

// Similarly for out-of-sample predictions:
let out_of_sample = forecaster
    .predict(5, 0.95)
    .expect("out-of-sample predictions should work");

Dependencies

~3MB
~63K SLoC