1 unstable release
0.1.0 | Oct 26, 2019 |
---|
#185 in Multimedia
13KB
142 lines
safe_ocl
about
This crate introduces zero-cost wrapper types for safe OpenCL. There are 2 wrapper types it introduces...
MapKernel
wrapper forocl::Kernel
MapProgram
wrapper forocl::Program
Currently, this is quite a limited set of types. Some of its limitations...
- Only supports map computation
- Only supports binary arithmetic operators
- Only safe for single-threaded
- Only safe for single-GPU
- Only safe under pre-condition that the read/write flag for buffer is correct
This is really just a skeleton for adding new things like generics, new wrapper types, subtypes that can eliminate undefined behavior in OpenCL usage.
example
This is how you would normally implement an adding map operation.
let src = r#"
__kernel void add(__global float* buffer, float scalar) {
buffer[get_global_id(0)] += scalar;
}
"#;
// (1) Define which platform and device(s) to use. Create a context,
// queue, and program then define some dims (compare to step 1 above).
let platform = Platform::default();
let device = Device::first(platform).unwrap();
let context = Context::builder()
.platform(platform)
.devices(device.clone())
.build().unwrap();
let program = Program::builder()
.devices(device)
.src(src)
.build(&context).unwrap();
let queue = Queue::new(&context, device, None).unwrap();
let dims = 1 << 20;
// [NOTE]: At this point we could manually assemble a ProQue by calling:
// `ProQue::new(context, queue, program, Some(dims))`. One might want to
// do this when only one program and queue are all that's needed. Wrapping
// it up into a single struct makes passing it around simpler.
// (2) Create a `Buffer`:
let buffer = Buffer::<f32>::builder()
.queue(queue.clone())
.flags(flags::MEM_READ_WRITE)
.len(dims)
.fill_val(0f32)
.build().unwrap();
// (3) Create a kernel with arguments matching those in the source above:
let kernel = Kernel::builder()
.program(&program)
.name("add")
.queue(queue.clone())
.global_work_size(dims)
.arg(&buffer)
.arg(&10.0f32)
.build().unwrap();
// (4) Run the kernel (default parameters shown for demonstration purposes):
unsafe {
kernel.cmd()
.queue(&queue)
.global_work_offset(kernel.default_global_work_offset())
.global_work_size(dims)
.local_work_size(kernel.default_local_work_size())
.enq().unwrap();
}
// (5) Read results from the device into a vector (`::block` not shown):
let mut vec = vec![0.0f32; dims];
buffer.cmd()
.queue(&queue)
.offset(0)
.read(&mut vec)
.enq().unwrap();
assert_eq!(vec, vec![10.0f32; dims]);
This is how you do it with the above types.
// (1) Define which platform and device(s) to use. Create a context,
// queue, and program then define some dims (compare to step 1 above).
let platform = Platform::default();
let device = Device::first(platform).unwrap();
let context = Context::builder()
.platform(platform)
.devices(device.clone())
.build().unwrap();
let program = MapProgram::from(device, Op::Add, &context).unwrap();
let queue = Queue::new(&context, device, None).unwrap();
let dims = 1 << 20;
// [NOTE]: At this point we could manually assemble a ProQue by calling:
// `ProQue::new(context, queue, program, Some(dims))`. One might want to
// do this when only one program and queue are all that's needed. Wrapping
// it up into a single struct makes passing it around simpler.
// (2) Create a `Buffer`:
let buffer = Buffer::<f32>::builder()
.queue(queue.clone())
.flags(flags::MEM_READ_WRITE) // TODO ensure buffer is read-write
.len(dims)
.fill_val(0f32)
.build().unwrap();
// (3) Create a kernel with arguments matching those in the source above:
let kernel = MapKernel::from(&program, queue.clone(), &buffer, &10.0f32).unwrap();
// (4) Run the kernel (default parameters shown for demonstration purposes):
kernel.cmd_enq(&queue);
// (5) Read results from the device into a vector (`::block` not shown):
let mut vec = vec![0.0f32; dims];
buffer.cmd()
.queue(&queue)
.offset(0)
.read(&mut vec)
.enq().unwrap();
assert_eq!(vec, vec![10.0f32; dims]);
Dependencies
~3MB
~54K SLoC