#gpu #quantum-computing #science

quant-iron

A high-performance, hardware-accelerated modular quantum computing library with a focus on physical applications. Quant-Iron provides tools to represent quantum states, apply standard quantum gates, perform measurements, build quantum circuits, and implement quantum algorithms.

1 unstable release

Uses new Rust 2024

new 0.1.0 May 22, 2025

#368 in HTTP server

MIT license

510KB
7K SLoC

Quant-Iron

A high-performance, hardware-accelerated modular quantum computing library with a focus on physical applications.

Quant-Iron provides tools to represent quantum states, apply standard quantum gates, perform measurements, build quantum circuits, and implement quantum algorithms.


Table of Contents


Features

  • Quantum State Representation: Create and manipulate predefined or custom quantum states of arbitrary qubit count.

  • Standard Operations: Hadamard (H), Pauli (X, Y, Z), CNOT, SWAP, Toffoli, Phase shifts, Rotations, and custom unitary operations.

  • Hardware Acceleration: Optimised for parallel execution (CPU and GPU) and low memory overhead, with OpenCL-accelerated operations for enhanced performance on compatible hardware. (Requires gpu feature flag).

  • Circuit Builder: High-level interface for constructing quantum circuits with a fluent API and support for subroutines.

  • Measurement: Collapse wavefunction in the measurement basis with single or repeated measurements in the Computational, X, Y, and custom bases.

  • Pauli String Algebra:

    • Represent products of Pauli operators with complex coefficients (PauliString).

    • Construct sums of Pauli strings (SumOp) to define Hamiltonians and other observables.

    • Apply Pauli strings and their sums to quantum states.

    • Calculate expectation values of SumOp with respect to a quantum state.

    • Apply exponentials of PauliString instances to states.

  • Predefined Quantum Models:

    • Heisenberg Model: Generate Hamiltonians for 1D and 2D anisotropic Heisenberg models using SumOp.
    • Ising Model: Generate Hamiltonians for 1D and 2D Ising models with configurable site-specific or uniform interactions and fields using SumOp.
  • Predefined Quantum Algorithms:

    • Quantum Fourier Transform (QFT): Efficiently compute the QFT for a given number of qubits.
    • Inverse Quantum Fourier Transform (IQFT): Efficiently compute the inverse QFT for a given number of qubits.
  • Extensibility: Easily extensible for custom gates and measurement bases.

  • Error Handling: Comprehensive error handling for invalid operations and state manipulations.

  • Quality of Life: Implementation of std and arithmetic traits for easy, intuitive usage.


Getting Started

Installation

Add quant-iron to your Cargo.toml:

[dependencies]
quant-iron = "0.1.0"

Or via cargo:

cargo add quant-iron

Quickstart

Create a new quantum state, apply gates, and measure:


fn qubits() {
    // Initialise a 2-qubit |++> state
    let measurement = State::new_plus(2)?
        .h(0)               // Hadamard on qubit 0
        .x(1)               // Pauli-X on qubit 1
        .h_multi(&[0, 1])   // Hadamard on both qubits
        .cnot(0, 1)         // CNOT with control=0, target=1
        .measure_n(MeasurementBasis::Computational, &[0, 1], 100)?; // Measure both qubits 100 times

    println!("Measurement results: {:?}", measurement.outcomes);    // Print the outcomes
    println!("New state: {:?}", measurement.new_state);             // Print the new state after measurement
}

Build a quantum circuit with a QFT subroutine and execute it on a state:

fn circuits() {
  // Build a circuit with 3 qubits
  let circuit = CircuitBuilder::new(3)
    .h_gate(0)                                                  // Add a Hadamard gate on qubit 0
    .cnot_gate(0, 1)                                            // Add a CNOT gate with control=0 and target=1
    .x_gates(vec![1, 2])                                        // Add Pauli-X gates on qubits 1 and 2
    .add_subroutine(Subroutine::qft(vec![1, 2], 3))             // Add a QFT subroutine on qubits 1 and 2 for the 3 qubit system
    .measure_gate(MeasurementBasis::Computational, vec![0, 1])  // Measure qubits 0 and 1
    .build();                                                   // Build the circuit

  let result = circuit.execute(State::new_plus(3)?);        // Execute the circuit on the |++> state
  println!("Circuit result: {:?}", result);                 // Print the result of the circuit execution
  println!("New state: {:?}", result.new_state);            // Print the new state after execution
}

Define a Hamiltonian and compute its expectation value:

fn hamiltonian() {
  // Define a Hamiltonian for a 2-qubit system
  let hamiltonian = SumOp::new()                                              // 2 X_0 + Y_1 + 0.5 Z_0 X_1
    .add_term(PauliString::new(2.0).add_op(0, Pauli::X))                      // 2X_0
    .add_term(PauliString::new(1.0).add_op(1, Pauli::Y))                      // Y_1
    .add_term(PauliString::new(0.5).add_op(0, Pauli::Z).add_op(1, Pauli::X)); // 0.5Z_0 X_1

  let state = State::new_plus(2)?;                                // Initialise a |++> state
  let expectation_value = hamiltonian.expectation_value(&state)?; // Compute the expectation value for the given state

  println!("Expectation value: {:?}", expectation_value);         // Print the expectation value for the Hamiltonian
}

Create a Hamiltonian for the 1D Heisenberg model and execute it on a state:

fn heisenberg() {
  // Define a Hamiltonian for the 1D Heisenberg model
  let number_of_spins = 3;
  let coupling_constant_x = 1.0;
  let coupling_constant_y = 2.0;
  let coupling_constant_z = 3.0;
  let field_strength = 0.5;
  let magnetic_field = 0.1;

  let hamiltonian = heisenberg_1d(number_of_spins, coupling_constant_x, 
  coupling_constant_y, coupling_constant_z, field_strength, magnetic_field)?;

  let state = State::new_plus(3)?;                  // Initialise a |+++> state
  let modified_state = hamiltonian.apply(&state)?;  // Apply the Hamiltonian to the state
  println!("Modified state: {:?}", modified_state); // Print the modified state
}

License

This project is licensed under the GNU General Public License v3.0.


Future Plans

  • Density Matrix Support: Extend to mixed states and density matrices for more complex quantum systems.
  • Circuit Visualisation: Graphical representation of quantum circuits for better understanding and debugging.
  • Quantum Arithmetic & Algorithms: Implement common subroutines (e.g. Grover's algorithm, Variational Quantum Eigensolver (VQE)).

Dependencies

~2–3MB
~58K SLoC