#array #circular #matrix #matrix-vector #vector

n_circular_array

An n-dimensional circular array

6 releases

new 0.1.5 Feb 7, 2025
0.1.4 Feb 7, 2025

#162 in Math

Download history 130/week @ 2025-01-27 408/week @ 2025-02-03

538 downloads per month

MIT/Apache

99KB
1.5K SLoC

N Circular Array

An n-dimensional circular array.

Features

  • Fixed dimension arrays of any size.
  • Element insertion to the front or back of any dimension.
  • Indexing, range and slicing operations.
  • Performant operations for sequentual Copy type elements.
  • Thorough testing for arrays of smaller dimensionality
  • No external dependencies.

Usage

The following example demonstrates the basic functionality offered by this crate.

// A 1-dimensional circular array of 6 elements.
let mut array = CircularArrayVec::new([6], vec![0, 1, 2, 3, 4, 5]);

array.push_front(0, &[6, 7]);
assert_eq!(array.iter().cloned().collect::<Vec<usize>>(), &[2, 3, 4, 5, 6, 7]);
array.push_back(0, &[0, 1]);
assert_eq!(array.iter().cloned().collect::<Vec<usize>>(), &[0, 1, 2, 3, 4, 5]);

// A 2-dimensional circular array of 3^2 elements.
let mut array = CircularArrayVec::new([3, 3], vec![
    0, 1, 2,
    3, 4, 5,
    6, 7, 8
]);

// Push to the front of axis 0.
array.push_front(0, &[9, 10, 11]);
assert_eq!(array.iter().cloned().collect::<Vec<usize>>(), &[
    1, 2, 9,
    4, 5, 10,
    7, 8, 11
]);

// Push to the back of axis 1.
array.push_back(1, &[12, 13, 14]);
assert_eq!(array.iter().cloned().collect::<Vec<usize>>(), &[
    12, 13, 14,
     1,  2,  9,
     4,  5, 10
]);

// Iterate over index 1 of axis 0 (The second column).
assert_eq!(array.iter_index(0, 1).cloned().collect::<Vec<usize>>(), &[
    13,
     2,
     5
]);

Mutation

n_circular_array allows for mutating single elements, or inserting any number of slices to an axis. Insertion operations expect elements arranged as a row-major slice. That is, insertion of two columns arranged as a row-major contiguous slice would be the elements of column one, interspersed by those of column two. This is the default behaviour when slicing into ndarray or nalgebra arrays.


// A 2-dimensional circular array of 3^2 elements.
let mut array = CircularArrayVec::new([3, 3], vec![
    0, 1, 2,
    3, 4, 5,
    6, 7, 8
]);

// Push two columns to the front of axis 0.
array.push_front(0, &[
     9, 10,
    11, 12,
    13, 14
]);

// Mutate the last element of the array (equivalent to `array.get_mut([2, 2])`).
assert_eq!(array[[2, 2]], 14);
array[[2, 2]] = 99;

assert_eq!(array.iter().cloned().collect::<Vec<usize>>(), &[
    2,  9, 10,
    5, 11, 12,
    8, 13, 99
]);

See [CircularArrayMut].

Indexing

n_circular_array allows for elements to be accessed by index or slice. Note that indexing operations take a fixed size array of N indices/ranges where N is the dimensionality of the array.


// A 2-dimensional circular array of 3 * 3 * 2 elements.
let mut array = CircularArrayVec::new([3, 3, 2], vec![
     0,  1,  2,
     3,  4,  5,
     6,  7,  8,

     9, 10, 11,
    12, 13, 14,
    15, 16, 17
]);

// Get the first element at index 1 of axis 2 (equivalent to `array.get([0, 0, 1])`).
assert_eq!(array[[0, 0, 1]], 9);

// Get the second and third row.
assert_eq!(array.iter_range(1, 1..3).cloned().collect::<Vec<_>>(), &[
     3,  4,  5,
     6,  7,  8,

    12, 13, 14,
    15, 16, 17
]);

// Elements of all columns, for the third row (index 2), of the second slice (index 1 of axis 2).
assert_eq!(array.iter_slice([0..3, 2..3, 1..2]).cloned().collect::<Vec<_>>(), &[
    15, 16, 17
]);

See [CircularArrayIndex] and [CircularArrayIndexMut].

Resizing/Reshaping

Resizing or reshaping can be achieved by iterating and collecting into a new CircularArray. This functionality is not offered from within the crate to make the performance implications explicit.

// A 3-dimensional array of shape [3, 3, 2].
let mut array = CircularArrayVec::new([3, 3, 2], vec![
     0,  1,  2,
     3,  4,  5,
     6,  7,  8,

     9, 10, 11,
    12, 13, 14,
    15, 16, 17
]);

// Insert a row at index 0.
array.push_front(0, &[3, 6, 9, 12, 15, 18]);
assert_eq!(array.iter().cloned().collect::<Vec<_>>(), &[
     1,  2,  3,
     4,  5,  6,
     7,  8,  9,

    10, 11, 12,
    13, 14, 15,
    16, 17, 18
]);
assert_eq!(array.offset(), &[1, 0, 0]);

// Iterate over index 1 of axis 2 into a 2-dimensional array of shape [3, 3].
let iter = array.iter_slice([0..3, 0..3, 1..2]).cloned();
let array_2 = CircularArrayVec::from_iter([3, 3], iter);

assert_eq!(array_2.iter().cloned().collect::<Vec<_>>(), &[
    10, 11, 12,
    13, 14, 15,
    16, 17, 18
]);
assert_eq!(array_2.offset(), &[0, 0]);

Performance

The inner dimensions of any n > 1 array are impacted the most by cache locality (or a lack thereof). Wrapping contigous slices over the bounds of an axis further reduces cache locality. Where possible, an array should be oriented in which the majority of operations are performed on the outermost dimension(s). n_circular_array will take contiguous slices of memory where possible. This can result in certain being as little as an iteration over a single contiguous slice, or for elements implementing Copy, as a single call to copy_from_slice.

License: MIT OR Apache-2.0

No runtime deps