5 releases
0.2.1 | Jun 3, 2024 |
---|---|
0.2.0 | Oct 1, 2023 |
0.1.2 | Sep 6, 2022 |
0.1.1 | Dec 10, 2021 |
0.1.0 | Dec 1, 2021 |
#63 in Machine learning
Used in disco-cli
35KB
732 lines
Disco Rust
🔥 Recommendations for Rust using collaborative filtering
- Supports user-based and item-based recommendations
- Works with explicit and implicit feedback
- Uses high-performance matrix factorization
🎉 Zero dependencies
Installation
Add this line to your application’s Cargo.toml
under [dependencies]
:
discorec = "0.2"
Getting Started
Prep your data in the format user_id, item_id, value
use discorec::{Dataset, Recommender};
let mut data = Dataset::new();
data.push("user_a", "item_a", 5.0);
data.push("user_a", "item_b", 3.5);
data.push("user_b", "item_a", 4.0);
IDs can be integers, strings, or any other hashable data type
data.push(1, "item_a".to_string(), 5.0);
If users rate items directly, this is known as explicit feedback. Fit the recommender with:
let recommender = Recommender::fit_explicit(&data);
If users don’t rate items directly (for instance, they’re purchasing items or reading posts), this is known as implicit feedback. Use 1.0
or a value like number of purchases or page views for the dataset, and fit the recommender with:
let recommender = Recommender::fit_implicit(&data);
Get user-based recommendations - “users like you also liked”
recommender.user_recs(&user_id, 5);
Get item-based recommendations - “users who liked this item also liked”
recommender.item_recs(&item_id, 5);
Get predicted ratings for a specific user and item
recommender.predict(&user_id, &item_id);
Get similar users
recommender.similar_users(&user_id, 5);
Examples
MovieLens
Download the MovieLens 100K dataset.
Add these lines to your application’s Cargo.toml
under [dependencies]
:
csv = "1"
serde = { version = "1", features = ["derive"] }
And use:
use csv::ReaderBuilder;
use discorec::{Dataset, RecommenderBuilder};
use serde::Deserialize;
use std::fs::File;
#[derive(Debug, Deserialize)]
struct Row {
user_id: i32,
item_id: i32,
rating: f32,
}
fn main() {
let mut train_set = Dataset::new();
let mut valid_set = Dataset::new();
let file = File::open("u.data").unwrap();
let mut rdr = ReaderBuilder::new()
.has_headers(false)
.delimiter(b'\t')
.from_reader(file);
for (i, record) in rdr.records().enumerate() {
let row: Row = record.unwrap().deserialize(None).unwrap();
let dataset = if i < 80000 { &mut train_set } else { &mut valid_set };
dataset.push(row.user_id, row.item_id, row.rating);
}
let recommender = RecommenderBuilder::new()
.factors(20)
.fit_explicit(&train_set);
println!("RMSE: {:?}", recommender.rmse(&valid_set));
}
Storing Recommendations
Save recommendations to your database.
Alternatively, you can store only the factors and use a library like pgvector-rust. See an example.
Algorithms
Disco uses high-performance matrix factorization.
- For explicit feedback, it uses the stochastic gradient method with twin learners
- For implicit feedback, it uses the conjugate gradient method
Specify the number of factors and iterations
RecommenderBuilder::new()
.factors(8)
.iterations(20)
.fit_explicit(&train_set);
Progress
Pass a callback to show progress
RecommenderBuilder::new()
.callback(|info| println!("{:?}", info))
.fit_explicit(&train_set);
Note: train_loss
and valid_loss
are not available for implicit feedback
Validation
Pass a validation set with explicit feedback
RecommenderBuilder::new()
.callback(|info| println!("{:?}", info))
.fit_eval_explicit(&train_set, &valid_set);
The loss function is RMSE
Cold Start
Collaborative filtering suffers from the cold start problem. It’s unable to make good recommendations without data on a user or item, which is problematic for new users and items.
recommender.user_recs(&new_user_id, 5); // returns empty array
There are a number of ways to deal with this, but here are some common ones:
- For user-based recommendations, show new users the most popular items
- For item-based recommendations, make content-based recommendations
Reference
Get ids
recommender.user_ids();
recommender.item_ids();
Get the global mean
recommender.global_mean();
Get factors
recommender.user_factors(&user_id);
recommender.item_factors(&item_id);
References
- A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization
- Faster Implicit Matrix Factorization
History
View the changelog
Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/disco-rust.git
cd disco-rust
cargo test