6 releases
0.3.1 | Jul 11, 2024 |
---|---|
0.3.0 | Sep 25, 2023 |
0.2.2 | Jun 20, 2023 |
0.2.1 | Dec 16, 2021 |
0.1.0 | Oct 15, 2021 |
#91 in Math
214 downloads per month
Used in 7 crates
(2 directly)
38KB
831 lines
STL Rust
Seasonal-trend decomposition for Rust
🎉 Zero dependencies
Installation
Add this line to your application’s Cargo.toml
under [dependencies]
:
stlrs = "0.3"
Getting Started
Decompose a time series
use stlrs::Stl;
let series = vec![
5.0, 9.0, 2.0, 9.0, 0.0, 6.0, 3.0, 8.0, 5.0, 8.0,
7.0, 8.0, 8.0, 0.0, 2.0, 5.0, 0.0, 5.0, 6.0, 7.0,
3.0, 6.0, 1.0, 4.0, 4.0, 4.0, 3.0, 7.0, 5.0, 8.0
];
let period = 7; // period of the seasonal component
let res = Stl::fit(&series, period).unwrap();
Get the components
res.seasonal();
res.trend();
res.remainder();
Robustness
Use robustness iterations
let res = Stl::params().robust(true).fit(&series, period).unwrap();
Get robustness weights
res.weights();
Multiple Seasonality
Specify multiple periods
use stlrs::Mstl;
let res = Mstl::fit(&series, &[7, 365]).unwrap();
Parameters
Set STL parameters
Stl::params()
.seasonal_length(7) // length of the seasonal smoother
.trend_length(15) // length of the trend smoother
.low_pass_length(7) // length of the low-pass filter
.seasonal_degree(0) // degree of locally-fitted polynomial in seasonal smoothing
.trend_degree(1) // degree of locally-fitted polynomial in trend smoothing
.low_pass_degree(1) // degree of locally-fitted polynomial in low-pass smoothing
.seasonal_jump(1) // skipping value for seasonal smoothing
.trend_jump(2) // skipping value for trend smoothing
.low_pass_jump(1) // skipping value for low-pass smoothing
.inner_loops(2) // number of loops for updating the seasonal and trend components
.outer_loops(0) // number of iterations of robust fitting
.robust(false) // if robustness iterations are to be used
Set MSTL parameters
Mstl::params()
.iterations(2) // number of iterations
.lambda(0.5) // lambda for Box-Cox transformation
.seasonal_lengths(&[11, 15]) // lengths of the seasonal smoothers
.stl_params(Stl::params()) // STL params
Strength
Get the seasonal strength
res.seasonal_strength();
Get the trend strength
res.trend_strength();
Credits
This library was ported from the Fortran implementation.
References
- STL: A Seasonal-Trend Decomposition Procedure Based on Loess
- MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with Multiple Seasonal Patterns
- Measuring strength of trend and seasonality
History
View the changelog
Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/stl-rust.git
cd stl-rust
cargo test