#postgresql #filtering #sorting #pagination #sql

pg_filters

A simple rust helper to generate postgres sql for pagination, sorting and filtering

17 releases

0.1.17 Dec 30, 2024
0.1.16 Dec 30, 2024
0.1.10 Aug 18, 2024
0.1.4 Jul 3, 2024
0.1.3 Jun 30, 2024

#205 in Web programming

Download history 21/week @ 2024-09-27 1/week @ 2024-10-04 64/week @ 2024-11-29 357/week @ 2024-12-06 183/week @ 2024-12-13 136/week @ 2024-12-20 218/week @ 2024-12-27 42/week @ 2025-01-03 9/week @ 2025-01-10

409 downloads per month

Apache-2.0 OR MIT

100KB
2K SLoC

PG Filters

License Docs Test Coverage Status Crates

A powerful Rust helper to generate PostgreSQL SQL for pagination, sorting, and advanced filtering with support for complex AND/OR conditions.

Usage

Column Definitions

First, define your column types:

use std::collections::HashMap;
use pg_filters::ColumnDef;

fn setup_columns() -> HashMap<&'static str, ColumnDef> {
    let mut columns = HashMap::new();
    columns.insert("name", ColumnDef::Text("name"));
    columns.insert("age", ColumnDef::Integer("age"));
    columns.insert("email", ColumnDef::Text("email"));
    columns.insert("active", ColumnDef::Boolean("active"));
    columns.insert("created_at", ColumnDef::Timestamp("created_at"));
    columns.insert("id", ColumnDef::Uuid("id"));
    columns
}

Simple Filtering

Basic filtering with multiple AND conditions:

use pg_filters::{PgFilters, PaginationOptions, FilteringOptions, ColumnDef};
use pg_filters::filtering::{FilterCondition, FilterExpression, FilterOperator};
use pg_filters::sorting::SortedColumn;

let columns = setup_columns();

// Create simple conditions
let name_condition = FilterExpression::Condition(FilterCondition::TextValue {
    column: "name".to_string(),
    operator: FilterOperator::Equal,
    value: Some("John".to_string()),
});

let age_condition = FilterExpression::Condition(FilterCondition::IntegerValue {
    column: "age".to_string(),
    operator: FilterOperator::GreaterThan,
    value: Some(18),
});

let filters = PgFilters::new(
    Some(PaginationOptions {
        current_page: 1,
        per_page: 10,
        per_page_limit: 10,
        total_records: 1000,
    }),
    vec![
        SortedColumn::new("age", "desc"),
        SortedColumn::new("name", "asc"),
    ],
    Some(FilteringOptions::new(
        vec![name_condition, age_condition],
        columns.clone(),
    )),
    columns,
)?;

let sql = filters.sql()?;
// Results in: WHERE (LOWER(name) = LOWER('John') AND age > 18) ORDER BY age DESC, name ASC LIMIT 10 OFFSET 0

Complex Filtering

Example with complex AND/OR conditions:

use pg_filters::filtering::{FilterExpression, LogicalOperator};

let columns = setup_columns();

// Create individual conditions
let name_condition = FilterExpression::Condition(FilterCondition::TextValue {
    column: "name".to_string(),
    operator: FilterOperator::Equal,
    value: Some("John".to_string()),
});

let age_condition = FilterExpression::Condition(FilterCondition::IntegerValue {
    column: "age".to_string(),
    operator: FilterOperator::GreaterThan,
    value: Some(18),
});

let city_condition = FilterExpression::Condition(FilterCondition::TextValue {
    column: "city".to_string(),
    operator: FilterOperator::In,
    value: Some("New York,London".to_string()),
});

// Create a complex filter: (name = 'John' AND age > 18) OR city IN ('New York', 'London')
let filter_group = FilterExpression::Group {
    operator: LogicalOperator::Or,
    expressions: vec![
        FilterExpression::Group {
            operator: LogicalOperator::And,
            expressions: vec![name_condition, age_condition],
        },
        city_condition,
    ],
};

let filters = PgFilters::new(
    Some(PaginationOptions {
        current_page: 1,
        per_page: 10,
        per_page_limit: 10,
        total_records: 1000,
    }),
    vec![SortedColumn::new("name", "asc")],
    Some(FilteringOptions::new(vec![filter_group], columns.clone())),
    columns,
)?;

let sql = filters.sql()?;
// Results in: WHERE ((LOWER(name) = LOWER('John') AND age > 18) OR city IN ('New York', 'London')) ORDER BY name ASC LIMIT 10 OFFSET 0

JSON Filter Support

PG Filters supports creating filters from JSON input:

use pg_filters::{JsonFilter, FilterBuilder};

let columns = setup_columns();

let json_filters = vec![
    JsonFilter {
        n: "name".to_string(),      // column name
        f: "LIKE".to_string(),      // filter operator
        v: "%John%".to_string(),    // value
        c: None,                    // connector (AND/OR)
    },
    JsonFilter {
        n: "age".to_string(),
        f: ">".to_string(),
        v: "18".to_string(),
        c: Some("AND".to_string()),
    },
];

let filter_builder = FilterBuilder::from_json_filters(&json_filters, true, &columns)?;

Pagination with Filtered Count

When you need to apply filtering rules for pagination:

let columns = setup_columns();
let filtering_options = FilteringOptions::new(vec![filter_expression], columns.clone());

// Create count filters
let count_filters = PgFilters::new(
    None,
    vec![],
    Some(filtering_options.clone()),
    columns.clone(),
)?;

// Get total count with filters applied
let count_sql = count_filters.count_sql(schema, table)?;
let total_rows = db.query_one(&count_sql, &[]).await?;
let total_records = total_rows.get::<usize, i64>(0);

// Create pagination options
let pagination = PaginationOptions::new(
    current_page as i64,
    per_page as i64,
    50,
    total_records,
);

// Create final filters with pagination
let filters = PgFilters::new(
    Some(pagination),
    sorting_columns,
    Some(filtering_options),
    columns,
)?;

Supported Column Types

  • Text - Text/VARCHAR/CHAR columns
  • Integer - INTEGER columns
  • BigInt - BIGINT columns
  • SmallInt - SMALLINT columns
  • Boolean - BOOLEAN columns
  • DoublePrecision - DOUBLE PRECISION columns
  • Real - REAL columns
  • Date - DATE columns
  • Timestamp - TIMESTAMP columns
  • TimestampTz - TIMESTAMP WITH TIME ZONE columns
  • Uuid - UUID columns (case-sensitive comparison)
  • Json/Jsonb - JSON and JSONB columns
  • TextArray - TEXT[] array columns
  • And many more (see documentation for full list)

Valid Filtering Operators

The filtering supports various operators for different column types:

Filtering Operators

All operators can be upper or lower case. Here are the supported operators by type:

Standard Comparison Operators

  • "=" - Equal to
  • "!=" - Not equal to
  • ">" - Greater than
  • ">=" - Greater than or equal to
  • "<" - Less than
  • "<=" - Less than or equal to

Text Search Operators

  • "LIKE" - Pattern matching
  • "NOT LIKE" - Negative pattern matching
  • "STARTS WITH" - Starts with pattern
  • "ENDS WITH" - Ends with pattern

Null Check Operators

  • "IS NULL" - Check for null values
  • "IS NOT NULL" - Check for non-null values

Collection Operators

  • "IN" - Value in list
  • "NOT IN" - Value not in list

Array Operators

  • "CONTAINS" - Array contains all specified values (@>)
  • "OVERLAPS" - Array contains any of specified values (&&)

Date Operators

  • "DATE_ONLY" - Match entire day
  • "DATE_RANGE" - Match date range (requires start,end format)
  • "RELATIVE" - Use relative date expression

Example usage for each operator type:

// Standard comparison
"f": "=", "v": "value"

// Text search
"f": "LIKE", "v": "%pattern%"

// Null check
"f": "IS NULL", "v": ""

// Collection
"f": "IN", "v": "value1,value2,value3"

// Array
"f": "CONTAINS", "v": "item1,item2"

// Date
"f": "DATE_ONLY", "v": "2024-12-29"
"f": "DATE_RANGE", "v": "2024-12-29 00:00:00,2024-12-29 23:59:59"
"f": "RELATIVE", "v": "now() - interval '1 day'"

Array Filtering

PG Filters supports filtering on PostgreSQL array columns. Here's how to use array filtering:

let columns = setup_columns();
columns.insert("services", ColumnDef::TextArray("services"));

// Using JSON filters:

// Find records where services array contains ALL specified values
let contains_filter = JsonFilter {
    n: "services".to_string(),
    f: "CONTAINS".to_string(),
    v: "EPC,Search".to_string(),
    c: None,
};

// Find records where services array contains ANY of the specified values
let overlaps_filter = JsonFilter {
    n: "services".to_string(),
    f: "OVERLAPS".to_string(),
    v: "EPC,Search".to_string(),
    c: None,
};

// Using direct conditions:
let contains_condition = FilterExpression::Condition(FilterCondition::ArrayContains {
    column: "services".to_string(),
    operator: FilterOperator::Contains,
    value: "EPC,Search".to_string(),
});

let overlaps_condition = FilterExpression::Condition(FilterCondition::ArrayOverlap {
    column: "services".to_string(),
    operator: FilterOperator::Overlaps,
    values: vec!["EPC".to_string(), "Search".to_string()],
});

Array filtering supports two operations:

  • CONTAINS (@>) - Finds records where the array column contains ALL specified values
  • OVERLAPS (&&) - Finds records where the array column contains ANY of the specified values

Note: Array operations are case-sensitive and perform exact matching.

Array Filtering SQL Examples

-- CONTAINS: Find all records where services include both 'EPC' and 'Search'
services @> ARRAY['EPC','Search']::text[]

-- OVERLAPS: Find all records where services include either 'EPC' or 'Search'
services && ARRAY['EPC','Search']::text[]

Date Filtering

PG Filters provides sophisticated date filtering capabilities with support for exact timestamps, date-only matching, ranges, and relative dates.

let columns = setup_columns();

// Using JSON filters:

// 1. Exact timestamp matching
let exact_filter = JsonFilter {
    n: "created_at".to_string(),
    f: "=".to_string(),
    v: "2024-12-29 15:30:00".to_string(),
    c: None,
};

// 2. Date-only matching (matches full day)
let date_only_filter = JsonFilter {
    n: "created_at".to_string(),
    f: "DATE_ONLY".to_string(),
    v: "2024-12-29".to_string(),
    c: None,
};

// 3. Date range matching
let range_filter = JsonFilter {
    n: "created_at".to_string(),
    f: "DATE_RANGE".to_string(),
    v: "2024-12-29 00:00:00,2024-12-29 23:59:59".to_string(),
    c: None,
};

// 4. Relative date matching
let relative_filter = JsonFilter {
    n: "created_at".to_string(),
    f: "RELATIVE".to_string(),
    v: "now() - interval '1 day'".to_string(),
    c: None,
};

// Using direct conditions:
let date_only_condition = FilterCondition::date_only(
    "created_at",
    "2024-12-29"
);

let range_condition = FilterCondition::date_range(
    "created_at",
    "2024-12-29 00:00:00",
    "2024-12-29 23:59:59"
);

let relative_condition = FilterCondition::relative_date(
    "created_at",
    "now() - interval '1 day'"
);

Date filtering supports several operations:

  • DATE_ONLY - Matches an entire day (from 00:00:00 to 23:59:59)
  • DATE_RANGE - Custom date range with start and end timestamps
  • RELATIVE - PostgreSQL relative date expressions
  • Standard operators (=, >, <, etc.) - For exact timestamp matching

Date Filtering SQL Examples

-- Exact timestamp match
created_at = '2024-12-29 15:30:00'

-- Date-only match (entire day)
created_at >= '2024-12-29 00:00:00' AND created_at < ('2024-12-29')::date + interval '1 day'

-- Date range
created_at BETWEEN '2024-12-29 00:00:00' AND '2024-12-29 23:59:59'

-- Relative date
created_at > now() - interval '1 day'

Common Relative Date Expressions

You can use PostgreSQL's interval syntax for relative dates:

// Last hour
"now() - interval '1 hour'"

// Last 24 hours
"now() - interval '24 hours'"

// Last 7 days
"now() - interval '7 days'"

// Last month
"now() - interval '1 month'"

// Start of current day
"date_trunc('day', now())"

// Start of current week
"date_trunc('week', now())"

// Start of current month
"date_trunc('month', now())"

Case Sensitivity

By default, text searches are case-insensitive. You can make them case-sensitive using:

let columns = setup_columns();
FilteringOptions::case_sensitive(vec![filter_expression], columns);

Type-Aware Filtering

PG Filters now handles different column types appropriately:

  • Text columns use case-insensitive comparison by default (can be made case-sensitive)
  • UUID columns always use case-sensitive comparison
  • Numeric columns use direct comparison
  • Date/Time types use appropriate format
  • Boolean values are handled correctly
  • JSON fields use appropriate operators

Pagination Details

The pagination information is returned in the following structure:

pub struct Paginate {
    pub pagination: Pagination,
    pub sql: String,
}

pub struct Pagination {
    current_page: i64,
    previous_page: i64,
    next_page: i64,
    total_pages: i64,
    per_page: i64,
    total_records: i64,
}

See the tests for more examples.

License

Licensed under either of these:

Dependencies

~0.5–1MB
~22K SLoC