#gpt #zip #tar #html-css #cli #unrar

app webtek-grader

Aids in the process of extracting student deliverables, and leverages GPT to generate a proposal for the student feedback

13 stable releases

2.3.0 Sep 23, 2024
2.2.3 Sep 23, 2024
1.0.4 Sep 18, 2024
1.0.1 Aug 22, 2024
0.1.0 Aug 21, 2024

#415 in Web programming

Download history 301/week @ 2024-08-17 38/week @ 2024-08-24 254/week @ 2024-08-31 23/week @ 2024-09-07 386/week @ 2024-09-14 542/week @ 2024-09-21 120/week @ 2024-09-28 3/week @ 2024-10-05

644 downloads per month

MIT license

37KB
566 lines

Web Technologies Grader

What is it?

This project is developed out of frustration related to the tedious process of downloading and grading student deliverables. It aids in the process of unzipping the student deliverables, and leverages GPT to generate a proposal for the student feedback.

Features

  • 📂 Extract deliverables: Extracts the student deliverables from a compressed file.
  • 🧪 Validate deliverables: Validates the HTML, CSS and JS using the W3C Validator API.
  • 🧠 Grade deliverables with AI: Grades the deliverables using the project description, all project files for the deliverable, and the grading criteria. This is optional, and can be run without AI.

🚨 Very important to note

This project is only meant to be a guideline when grading assignments, not a one-stop shop. It is important to review the generated feedback and adjust it to fit the student's deliverable. Every single deliverable requires a human eye to evaluate the points given and the feedback provided.

Please do not use this blindly without reviewing the feedback generated. 🫶🏽

Getting started

Prerequisites

Ensure you have Rust and Cargo installed on your machine. If not, you can install it by following the instructions here. If you are on MacOS or Linux, you can follow the instructions below:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

If you're on Windows, you can download the installer from here.

If you want to use the Grade with AI feature, ensure you have an OpenAI API key. If not, you can get one by following the instructions here. Next, create a .env file in the root of the project directory and add the following:

OPENAI_API_KEY=<your-openai-api-key>

Alternatively, you can set the OPENAI_API_KEY environment variable in your terminal using export OPENAI_API_KEY=<your-openai-api-key>, followed by running the application.

I recommend using the .env file approach as it is easier to manage across sessions.

For instance, if you're grading deliverables in a directory called webtek, the directory structure should look like this:

webtek/
└── .env

Running the application

# Install the application
cargo install webtek-grader

# Display the help message
webtek-grader --help

# Extract and validate without AI
webtek-grader without-ai <archive-file> <destination-directory>

# Extract, validate and grade with AI
webtek-grader with-ai <archive-file> <destination-directory> <description-file> <criteria-file>

How does grading with AI work?

As described above, ensure you have an OPENAI_API_KEY environment variable set in your terminal or a .env file in the root of the project directory.

The archive-file is the path to the compressed file containing the student deliverables.

The destination-directory is the directory where the deliverables will be extracted, e.g. assignment-1.

The description-file is the path to a PDF file for the assignment description. Ensure this is a PDF file, and not any other file extension.

The criteria-file is the path to the grading criteria for the assignment. Ensure this is a PDF file, and not any other file extension.

The pipeline when grading with AI

  1. The script starts by extracting the deliverables.

  2. Next, it validates the HTML, CSS and JS using the W3C Validator API. When running this with AI, the errors and warning from W3C Validator are input to the GPT model, and a validate.txt file is generated with the validation feedback for that group.

  3. Next, the deliverable is graded using the project description, all project files for the deliverable, and the grading criteria. The GPT model outputs feedback and a suggested score for the deliverable in the feedback.txt file.

Example of validating with AI

Here is an example of some errors and warnings from W3C Validator, and the respective generated feedback:

Response from W3C Validator

{
  "messages": [
    {
      "type": "error",
      "message": "Bad value “300px” for attribute “width” on element “img”: Expected a digit but saw “p” instead."
    },
    {
      "type": "error",
      "message": "An “img” element must have an “alt” attribute, except under certain conditions. For details, consult guidance on providing text alternatives for images."
    },
    {
      "type": "error",
      "message": "No “p” element in scope but a “p” end tag seen."
    },
    {
      "type": "info",
      "subType": "warning",
      "message": "Consider using the “h1” element as a top-level heading only (all “h1” elements are treated as top-level headings by many screen readers and other tools)."
    },
    {
      "type": "info",
      "subType": "warning",
      "message": "Consider adding a “lang” attribute to the “html” start tag to declare the language of this document."
    }
  ]
}

Generated feedback for validating

Tilbakemelding om validering:

Verdien “300px” for attributten “width” på elementet “img” er ugyldig. Attributter for bredde og høyde skal kun spesifiseres med tall, så her skal “300” være brukt uten “px”. Eksempel: `<img src="bilde.jpg" width="300">`.

Et “img”-element må ha et “alt”-attributt for å gi tekstalternativer til bilder, noe som er viktig for tilgjengelighet. Eksempel: `<img src="bilde.jpg" alt="Beskrivelse av bildet">`.

Det finnes ikke noe “p”-element i scope, men det er funnet en avsluttende “p”-tag. Dette betyr at det er en feil bruk av parantes, og avsluttende tagger bør kun brukes hvis det er et tilhørende åpningstag. Eksempel: Hvis det er en ubrukt “p”-tag, fjern den eller legg til en matchende åpningstag.

Det anbefales å bruke “h1”-elementet kun som et toppnivå overskrift, da skjermlesere og verktøy betrakter alle “h1”-elementer som toppnivå overskrifter. Bruk riktig hierarki, for eksempel: `<h1>Tittel</h1>` for hovedtittelen.

Det kan være nyttig å legge til et “lang”-attributt i “html”-starttaggen for å deklarere språket i dokumentet. Dette forbedrer tilgjengeligheten for brukere som bruker skjermlesere. Eksempel: `<html lang="no">`.

Example of grading with AI

Here is an example of a project description and grading criteria, and the respective generated feedback:

Excerpt from project description and grading criteria

# Project Description

Create a new section element, below your previous, but above the footer.
Add a header element to it, and fill it with an h2 tag containing the title "Questions".
Then make a table with 2 columns and seven rows.
The first row must be the table header with “Questions” and “Answers”.
In each of the remaining six rows add one of the following questions and write their answers:

...

# Grading Criteria

Is the placement of the section correct? 1.5 points
Is the new header added properly? 1.5 points
Are the questions answered correctly? 1 point for each correct answer
Is the table created correctly? 6 points
Is the table rendering properly? 6 points
Does the columns have headings? 2 points for each heading

Generated feedback for grading

Denne delen inkluderer en ny seksjon med overskriften (h2) "Questions".
I denne seksjonen inkluderer studenten en tabell med syv rader og to kolonner.
Kan følge lenken til denne seksjonen ved hjelp av ankeret "questions".
Spørsmål og svar på spørsmålene oppgitt i oppgavebeskrivelsen er inkludert i tabellen.
Dette oppfyller alle kravene i del 3.

Developer Information

Developed by Magnus Rødseth.

Dependencies

~30–47MB
~751K SLoC