### 7 unstable releases (3 breaking)

0.4.2 | Feb 8, 2021 |
---|---|

0.4.1 | Feb 6, 2021 |

0.3.0 | Jan 28, 2021 |

0.2.1 | Jan 27, 2021 |

0.1.0 | Jan 13, 2021 |

#**130** in #geometry

**MIT**license

36KB

488 lines

###
`lib.rs`

:

Implementation of Simulation of Simplicity by Edelsbrunner and Mücke

Simulation of simplicity is a technique for ignoring
degeneracies when calculating geometric predicates,
such as the orientation of one point with respect to a list of points.
Each point **p**_ *i* is perturbed by some polynomial
in ε, a sufficiently small positive number.
Specifically, coordinate *p_(i,j)* is perturbed by ε^(3^(*d***i* - *j*)),
where *d* is more than the number of dimensions.

# Predicates

## Orientation

The orientation of 2 points **p**_0, **p**_1 in 1-dimensional space is
positive if **p**_0 is to the right of **p**_1 and negative otherwise.
We don't consider the case where **p**_0 = **p**_1 because of the perturbations.

The orientation of *n* points **p**_0, ..., **p**_(n - 1) in (n - 1)-dimensional space is
the same as the orientation of **p**_1, ..., **p**_(n - 1) when looked at
from **p**_0. In particular, the orientation of 3 points in 2-dimensional space
is positive iff they form a left turn.

Orientation predicates for 1, 2, and 3 dimensions are implemented. They return whether the orientation is positive.

## In Hypersphere

The in-circle of 4 points measures whether the last point is inside the circle that goes through the first 3 points. Those 3 points are not collinear because of the perturbations.

The in-sphere of 5 points measures whether the last point is inside the sphere that goes through the first 4 points. Those 4 points are not coplanar because of the perturbations.

# Usage

`use` `simplicity``::``{`nalgebra`,` orient_2d`}``;`
`use` `nalgebra``::`Vector2`;`
`let` points `=` `vec!``[`
`Vector2``::`new`(``0.``0``,` `0.``0``)``,`
`Vector2``::`new`(``1.``0``,` `0.``0``)``,`
`Vector2``::`new`(``1.``0``,` `1.``0``)``,`
`Vector2``::`new`(``0.``0``,` `1.``0``)``,`
`Vector2``::`new`(``2.``0``,` `0.``0``)``,`
`]``;`
`//` Positive orientation
`let` result `=` `orient_2d``(``&`points`,` `|``l``,` `i``|` `l``[`i`]``,` `0``,` `1``,` `2``)``;`
`assert!``(`result`)``;`
`//` Negative orientation
`let` result `=` `orient_2d``(``&`points`,` `|``l``,` `i``|` `l``[`i`]``,` `0``,` `3``,` `2``)``;`
`assert!``(``!`result`)``;`
`//` Degenerate orientation, tie broken by perturbance
`let` result `=` `orient_2d``(``&`points`,` `|``l``,` `i``|` `l``[`i`]``,` `0``,` `1``,` `4``)``;`
`assert!``(`result`)``;`
`let` result `=` `orient_2d``(``&`points`,` `|``l``,` `i``|` `l``[`i`]``,` `4``,` `1``,` `0``)``;`
`assert!``(``!`result`)``;`

Because the predicates take an indexing function, this can be
used for arbitrary lists without having to implement

for them:`Index`

`#` `use` `simplicity``::``{`nalgebra`,` orient_2d`}``;`
`#` `use` `nalgebra``::`Vector2`;`
`let` points `=` `vec!``[`
`(``Vector2``::`new`(``0.``0``,` `0.``0``)``,` `0.``8``)``,`
`(``Vector2``::`new`(``1.``0``,` `0.``0``)``,` `0.``4``)``,`
`(``Vector2``::`new`(``2.``0``,` `0.``0``)``,` `0.``6``)``,`
`]``;`
`let` result `=` `orient_2d``(``&`points`,` `|``l``,` `i``|` `l``[`i`]``.``0``,` `0``,` `1``,` `2``)``;`

#### Dependencies

~5MB

~99K SLoC