#machine-learning #deep-learning #tensor

rai-models

ML framework with Ergonomic APIs in Rust

5 releases (breaking)

0.11.0 May 14, 2024
0.10.0 Mar 26, 2024
0.9.0 Feb 24, 2024
0.8.0 Feb 20, 2024
0.7.0 Jan 23, 2024

#742 in Machine learning

MIT/Apache

76KB
2K SLoC

RAI

Rust Docs Status Latest Version Discord

ML framework with ergonomic APIs in Rust. Lazy computation and composable transformations like JAX.

Installation

cargo add rai

Code snippets

Function transformations (jvp, vjp, grad, value_and_grad)

use rai::{grad, Cpu, Tensor, F32};

fn f(x: &Tensor) -> Tensor {
    x.sin()
}

fn main() {
    let grad_fn = grad(grad(f));
    let x = &Tensor::ones([1], F32, &Cpu);
    let grad = grad_fn(x);
    println!("{}", grad.dot_graph());
    println!("{}", grad);
}

NN Modules, Optimizer and loss functions

fn loss_fn<M: TrainableModule<Input = Tensor, Output = Tensor>>(
    model: &M,
    input: &Tensor,
    labels: &Tensor,
) -> (Tensor, Aux<Tensor>) {
    let logits = model.forward(input);
    let loss = softmax_cross_entropy(&logits, labels).mean(..);
    (loss, Aux(logits))
}

fn train_step<M: TrainableModule<Input = Tensor, Output = Tensor>, O: Optimizer>(
    optimizer: &mut O,
    model: &M,
    input: &Tensor,
    labels: &Tensor,
) {
    let vg_fn = value_and_grad(loss_fn);
    let ((_loss, Aux(_logits)), (grads, ..)) = vg_fn((model, input, labels));
    let mut params = optimizer.step(&grads);
    eval(&params);
    model.update_params(&mut params);
}

Examples

  • linear_regression
    • cargo run --bin linear_regression --release
  • mnist
    • cargo run --bin mnist --release
    • cargo run --bin mnist --release --features=cuda
  • mnist-cnn
    • cargo run --bin mnist-cnn --release
    • cargo run --bin mnist-cnn --release --features=cuda
  • phi2
    • cargo run --bin phi2 --release
    • cargo run --bin phi2 --release --features=cuda
  • phi3
    • cargo run --bin phi3 --release
    • cargo run --bin phi3 --release --features=cuda
  • qwen2
    • cargo run --bin qwen2 --release
    • cargo run --bin qwen2 --release --features=cuda
  • gemma
    • accept license agreement in https://huggingface.co/google/gemma-2b
    • pip install huggingface_hub
    • login to hf huggingface-cli login
    • cargo run --bin gemma --release
    • cargo run --bin gemma --release --features=cuda
  • vit
    • cargo run --bin vit --release
    • cargo run --bin vit --release --features=cuda

LICENSE

This project is licensed under either of

at your option.

Dependencies

~20–33MB
~505K SLoC