31 releases
0.21.0 | Nov 27, 2024 |
---|---|
0.20.1 | Oct 10, 2024 |
0.19.1 | Apr 17, 2024 |
0.15.2 | Feb 12, 2024 |
0.5.0 | Oct 9, 2019 |
#14 in Text processing
131,960 downloads per month
Used in 105 crates
(78 directly)
790KB
19K
SLoC
The core of tokenizers
, written in Rust.
Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.
What is a Tokenizer
A Tokenizer works as a pipeline, it processes some raw text as input and outputs an Encoding
.
The various steps of the pipeline are:
- The
Normalizer
: in charge of normalizing the text. Common examples of normalization are the unicode normalization standards, such asNFD
orNFKC
. More details about how to use theNormalizers
are available on the Hugging Face blog - The
PreTokenizer
: in charge of creating initial words splits in the text. The most common way of splitting text is simply on whitespace. - The
Model
: in charge of doing the actual tokenization. An example of aModel
would beBPE
orWordPiece
. - The
PostProcessor
: in charge of post-processing theEncoding
to add anything relevant that, for example, a language model would need, such as special tokens.
Loading a pretrained tokenizer from the Hub
use tokenizers::tokenizer::{Result, Tokenizer};
fn main() -> Result<()> {
# #[cfg(feature = "http")]
# {
let tokenizer = Tokenizer::from_pretrained("bert-base-cased", None)?;
let encoding = tokenizer.encode("Hey there!", false)?;
println!("{:?}", encoding.get_tokens());
# }
Ok(())
}
Deserialization and tokenization example
use tokenizers::tokenizer::{Result, Tokenizer, EncodeInput};
use tokenizers::models::bpe::BPE;
fn main() -> Result<()> {
let bpe_builder = BPE::from_file("./path/to/vocab.json", "./path/to/merges.txt");
let bpe = bpe_builder
.dropout(0.1)
.unk_token("[UNK]".into())
.build()?;
let mut tokenizer = Tokenizer::new(bpe);
let encoding = tokenizer.encode("Hey there!", false)?;
println!("{:?}", encoding.get_tokens());
Ok(())
}
Training and serialization example
use tokenizers::decoders::DecoderWrapper;
use tokenizers::models::bpe::{BpeTrainerBuilder, BPE};
use tokenizers::normalizers::{strip::Strip, unicode::NFC, utils::Sequence, NormalizerWrapper};
use tokenizers::pre_tokenizers::byte_level::ByteLevel;
use tokenizers::pre_tokenizers::PreTokenizerWrapper;
use tokenizers::processors::PostProcessorWrapper;
use tokenizers::{AddedToken, Model, Result, TokenizerBuilder};
use std::path::Path;
fn main() -> Result<()> {
let vocab_size: usize = 100;
let mut trainer = BpeTrainerBuilder::new()
.show_progress(true)
.vocab_size(vocab_size)
.min_frequency(0)
.special_tokens(vec![
AddedToken::from(String::from("<s>"), true),
AddedToken::from(String::from("<pad>"), true),
AddedToken::from(String::from("</s>"), true),
AddedToken::from(String::from("<unk>"), true),
AddedToken::from(String::from("<mask>"), true),
])
.build();
let mut tokenizer = TokenizerBuilder::new()
.with_model(BPE::default())
.with_normalizer(Some(Sequence::new(vec![
Strip::new(true, true).into(),
NFC.into(),
])))
.with_pre_tokenizer(Some(ByteLevel::default()))
.with_post_processor(Some(ByteLevel::default()))
.with_decoder(Some(ByteLevel::default()))
.build()?;
let pretty = false;
tokenizer
.train_from_files(
&mut trainer,
vec!["path/to/vocab.txt".to_string()],
)?
.save("tokenizer.json", pretty)?;
Ok(())
}
Additional information
- tokenizers is designed to leverage CPU parallelism when possible. The level of parallelism is determined
by the total number of core/threads your CPU provides but this can be tuned by setting the
RAYON_RS_NUM_THREADS
environment variable. As an example settingRAYON_RS_NUM_THREADS=4
will allocate a maximum of 4 threads. Please note this behavior may evolve in the future
Features
progressbar: The progress bar visualization is enabled by default. It might be disabled if compilation for certain targets is not supported by the termios dependency of the indicatif progress bar.
Dependencies
~13–26MB
~375K SLoC