84 releases (33 breaking)
0.45.1 | Dec 9, 2024 |
---|---|
0.44.2 | Nov 1, 2024 |
0.41.3 | Jul 2, 2024 |
0.38.3 | Mar 18, 2024 |
0.12.1 | Feb 13, 2021 |
#18 in Database implementations
87,385 downloads per month
Used in 207 crates
(12 directly)
8MB
195K
SLoC
polars-lazy
polars-lazy
serves as the lazy query engine for the Polars
DataFrame library. It allows you to perform operations on DataFrames in a lazy manner, only
executing them when necessary. This can lead to significant performance improvements for large
datasets.
Important Note: This crate is not intended for external usage. Please refer to the main Polars crate for intended usage.
lib.rs
:
Lazy API of Polars
The lazy API of Polars supports a subset of the eager API. Apart from the distributed compute, it is very similar to Apache Spark. You write queries in a domain specific language. These queries translate to a logical plan, which represent your query steps. Before execution this logical plan is optimized and may change the order of operations if this will increase performance. Or implicit type casts may be added such that execution of the query won't lead to a type error (if it can be resolved).
Lazy DSL
The lazy API of polars replaces the eager DataFrame
with the LazyFrame
, through which
the lazy API is exposed.
The LazyFrame
represents a logical execution plan: a sequence of operations to perform on a concrete data source.
These operations are not executed until we call collect
.
This allows polars to optimize/reorder the query which may lead to faster queries or fewer type errors.
In general, a LazyFrame
requires a concrete data source — a DataFrame
, a file on disk, etc. — which polars-lazy
then applies the user-specified sequence of operations to.
To obtain a LazyFrame
from an existing DataFrame
, we call the lazy
method on
the DataFrame
.
A LazyFrame
can also be obtained through the lazy versions of file readers, such as LazyCsvReader
.
The other major component of the polars lazy API is Expr
, which represents an operation to be
performed on a LazyFrame
, such as mapping over a column, filtering, or groupby-aggregation.
Expr
and the functions that produce them can be found in the dsl module.
Most operations on a LazyFrame
consume the LazyFrame
and return a new LazyFrame
with the updated plan.
If you need to use the same LazyFrame
multiple times, you should clone
it, and optionally
cache
it beforehand.
Examples
Adding a new column to a lazy DataFrame
#[macro_use] extern crate polars_core;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
let df = df! {
"column_a" => &[1, 2, 3, 4, 5],
"column_b" => &["a", "b", "c", "d", "e"]
}.unwrap();
let new = df.lazy()
// Note the reverse here!!
.reverse()
.with_column(
// always rename a new column
(col("column_a") * lit(10)).alias("new_column")
)
.collect()
.unwrap();
assert!(new.column("new_column")
.unwrap()
.equals(
&Column::new("new_column".into(), &[50, 40, 30, 20, 10])
)
);
Modifying a column based on some predicate
#[macro_use] extern crate polars_core;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
let df = df! {
"column_a" => &[1, 2, 3, 4, 5],
"column_b" => &["a", "b", "c", "d", "e"]
}.unwrap();
let new = df.lazy()
.with_column(
// value = 100 if x < 3 else x
when(
col("column_a").lt(lit(3))
).then(
lit(100)
).otherwise(
col("column_a")
).alias("new_column")
)
.collect()
.unwrap();
assert!(new.column("new_column")
.unwrap()
.equals(
&Column::new("new_column".into(), &[100, 100, 3, 4, 5])
)
);
Groupby + Aggregations
use polars_core::prelude::*;
use polars_core::df;
use polars_lazy::prelude::*;
use arrow::legacy::prelude::QuantileMethod;
fn example() -> PolarsResult<DataFrame> {
let df = df!(
"date" => ["2020-08-21", "2020-08-21", "2020-08-22", "2020-08-23", "2020-08-22"],
"temp" => [20, 10, 7, 9, 1],
"rain" => [0.2, 0.1, 0.3, 0.1, 0.01]
)?;
df.lazy()
.group_by([col("date")])
.agg([
col("rain").min().alias("min_rain"),
col("rain").sum().alias("sum_rain"),
col("rain").quantile(lit(0.5), QuantileMethod::Nearest).alias("median_rain"),
])
.sort(["date"], Default::default())
.collect()
}
Calling any function
Below we lazily call a custom closure of type Series => Result<Series>
. Because the closure
changes the type/variant of the Series we also define the return type. This is important because
due to the laziness the types should be known beforehand. Note that by applying these custom
functions you have access to the whole eager API of the Series/ChunkedArrays.
#[macro_use] extern crate polars_core;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
let df = df! {
"column_a" => &[1, 2, 3, 4, 5],
"column_b" => &["a", "b", "c", "d", "e"]
}.unwrap();
let new = df.lazy()
.with_column(
col("column_a")
// apply a custom closure Series => Result<Series>
.map(|_s| {
Ok(Some(Column::new("".into(), &[6.0f32, 6.0, 6.0, 6.0, 6.0])))
},
// return type of the closure
GetOutput::from_type(DataType::Float64)).alias("new_column")
)
.collect()
.unwrap();
Joins, filters and projections
In the query below we do a lazy join and afterwards we filter rows based on the predicate a < 2
.
And last we select the columns "b"
and "c_first"
. In an eager API this query would be very
suboptimal because we join on DataFrames with more columns and rows than needed. In this case
the query optimizer will do the selection of the columns (projection) and the filtering of the
rows (selection) before the join, thereby reducing the amount of work done by the query.
fn example(df_a: DataFrame, df_b: DataFrame) -> LazyFrame {
df_a.lazy()
.left_join(df_b.lazy(), col("b_left"), col("b_right"))
.filter(
col("a").lt(lit(2))
)
.group_by([col("b")])
.agg(
vec![col("b").first().alias("first_b"), col("c").first().alias("first_c")]
)
.select(&[col("b"), col("c_first")])
}
If we want to do an aggregation on all columns we can use the wildcard operator *
to achieve this.
fn aggregate_all_columns(df_a: DataFrame) -> LazyFrame {
df_a.lazy()
.group_by([col("b")])
.agg(
vec![col("*").first()]
)
}
Dependencies
~12–48MB
~787K SLoC