#elements #atom #state #nuclear-physics #isotope

Nuclide

Database and simple modeling of all known nuclides

12 releases

0.2.1 Sep 2, 2023
0.1.9 Sep 13, 2022
0.1.7 Jul 19, 2022
0.1.4 Nov 18, 2021
0.1.1 Jul 20, 2021

#35 in Science

30 downloads per month

MIT license

1MB
10K SLoC

Iridium

Atomic Physics Library

Nuclide

The current version of this library has data on 3584 nuclides in there ground-base states. The primary sources are NUBASE2020[8], the ENDSF[9], and various Nuclear Data Sheets. In cases of ambiguity, estimates are made by the author based on trends from the neighboring nuclides.

                                                                           -Sory, J.A

Available Data

  • Electronegative Values predicted for the thermochemical electronega- tivity, currently the best predictor of experimental values[1].
  • Pauling Electronegativity using the Pauling scale, mostly kept for completeness as the Pauling scale performs poorly in application [3].
  • Allen Electronegativity using the Allen scale[2]
  • Electron Affinities of the elements, in kilojoules/mol
  • Ionization Energies of all known electron configurations[]
  • Covalent Radii The covalent radii calculated from single[5], double[6] and triple[7] bonds
  • Van der Waal radii approximated in crystalline structures and isolated atoms. Unlike most libraries and databases which use Bondi’s approximations to the van der Waal radius, Batsanov’s approximations are used here [4].
  • Half-life, mean lifetime and decay constant for each nuclide.
  • Atomic mass, binding energy and mass defect for each nuclide.

Features

In addition to providing the previous information this library has some other features.

  • Simple modeling of decay including decay particle energies
  • Prediction of mass and binding energies of theorectical nuclides using Bethe-Weiszacker Liquid Drop model See the periodic table repository for a simple look-up gui implementation.

Usage


use Nuclide::Nuclide;

// Create mutable U-235 nuclide, mutable to permit decay. 

let mut u235 = Nuclide::new("U-235").unwrap();

// Approximation ionization energy of U-235 +52 in kilojoules per mole 

//(SI units are produced by default, however non-SI units are also frequently supported, read the documentation)

assert_eq!(u235.ionization_energies(52).unwrap(),283474.03313085996);

// Model the decay over 5x10^20 seconds, total energy and particles are released 

let (decay_energy, decay_particles) = u235.decay(5E+20);

assert_eq!(u235.identity(), "Pb-206")

References

[1] Tantardini, C., Oganov, A.R. ”Thermochemical Electronegatives of the elements”. Nature Commu- nications 12, 2087 (2021).doi:10.1038/s41467-021-22429-0

[2] Allen, L.C. ”Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms”. Journal of the American Chemical Society. 111(25),1989. pp. 9003-9014. doi:10.1021/ja00207a003

[3] Lynne Reed Murphy, Terry L. Meek, A. Louis Allred, and Leland C. Allen. ”Evaluation and Test of Pauling’s Electronegativity Scale”. The Journal of Physical Chemistry. vol. 104 (24), 2000. pp. 5867-5871 doi:10.1021/jp000288e

[4] Batsanov, S.S. ”Van der Waals Radii of Elements”.Inorganic Materials Vol 37, 2001. pp. 871- 885.doi:10.1023/A:1011625728803

[5] Pyykkö, P., Atsumi, M. (2009). Molecular Single-Bond Covalent Radii for Elements 1-118. Chemistry A European Journal, 15(1), 186–197. doi:10.1002/chem.200800987

[6] Pyykkö, P., Atsumi, M. (2009). Molecular Double-Bond Covalent Radii for Elements Li–E112. Chem- istry - A European Journal, 15(46), 12770–12779. doi:10.1002/chem.200901472

[7] Pyykkö, P., Riedel, S., Patzschke, M. (2005). Triple-Bond Covalent Radii. Chemistry - A European Journal, 11(12), 3511–3520. doi:10.1002/chem.20040129

[8] Kondev, F.G et al. ”The NUBASE2020 evaluation of nuclear physics properties”. 2021 Chinese Phys. C45 030001

[9] Brookhaven National Laboratory. https://www.nndc.bnl.gov/ensdf/. Accessed Jul 16 2021.

Dependencies