1 unstable release
0.0.1 | Oct 10, 2024 |
---|
#8 in #gguf
59 downloads per month
Used in 3 crates
7MB
4.5K
SLoC
llm_models: Load and Download LLM Models, Metadata, and Tokenizers
This crate is part of the llm_client crate.
- GGUFs from local storage or Hugging Face
- Parses model metadata from GGUF file
- Includes limited support for tokenizer from GGUF file
- Also supports loading Metadata and Tokenizer from their respective files
LocalLlmModel
Everything you need for GGUF models. The GgugLoader
wraps the loaders for convience. All loaders return a LocalLlmModel
which contains the tokenizer, metadata, chat template, and anything that can be extract from the GGUF.
GgufPresetLoader
- Presets for popular models like Llama 3, Phi, Mistral/Mixtral, and more
- Loads the best quantized model by calculating the largest quant that will fit in your VRAM
let model: LocalLlmModel = GgufLoader::default()
.llama3_1_8b_instruct()
.preset_with_available_vram_gb(48) // Load the largest quant that will fit in your vram
.load()?;
GgufHfLoader
GGUF models from Hugging Face.
let model: LocalLlmModel = GgufLoader::default()
.hf_quant_file_url("https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q8_0.gguf")
.load()?;
GgufLocalLoader
GGUF models for local storage.
let model: LocalLlmModel = GgufLoader::default()
.local_quant_file_path("/root/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/blobs/9da71c45c90a821809821244d4971e5e5dfad7eb091f0b8ff0546392393b6283")
.load()?;
ApiLlmModel
- Supports openai, anthropic, perplexity, and adding your own API models
- Supports prompting, tokenization, and price estimation
assert_eq!(ApiLlmModel::gpt_4_o(), ApiLlmModel {
model_id: "gpt-4o".to_string(),
context_length: 128000,
cost_per_m_in_tokens: 5.00,
max_tokens_output: 4096,
cost_per_m_out_tokens: 15.00,
tokens_per_message: 3,
tokens_per_name: 1,
tokenizer: Arc<LlmTokenizer>,
})
LlmTokenizer
- Simple abstract API for encoding and decoding allows for abstract LLM consumption across multiple architechtures. *Hugging Face's Tokenizer library for local models and Tiktoken-rs for OpenAI and Anthropic (Anthropic doesn't have a publically available tokenizer.)
let tok = LlmTokenizer::new_tiktoken("gpt-4o"); // Get a Tiktoken tokenizer
let tok = LlmTokenizer::new_from_tokenizer_json("path/to/tokenizer.json"); // From local path
let tok = LlmTokenizer::new_from_hf_repo(hf_token, "meta-llama/Meta-Llama-3-8B-Instruct"); // From repo
// From LocalLlmModel or ApiLlmModel
let tok = model.model_base.tokenizer;
Setter Traits
- All setter traits are public, so you can integrate into your own projects if you wish.
- For example:
OpenAiModelTrait
,GgufLoaderTrait
,AnthropicModelTrait
, andHfTokenTrait
for loading models
Dependencies
~24–37MB
~426K SLoC