51 releases (17 breaking)
new 0.18.4 | Dec 13, 2024 |
---|---|
0.18.0 | Nov 29, 2024 |
0.10.2 | Jul 25, 2024 |
0.5.3 | Mar 25, 2024 |
0.3.0 | Nov 28, 2023 |
#201 in Data structures
1,202 downloads per month
Used in llama-core
575KB
11K
SLoC
Prompt Templates for LLMs
chat-prompts
is part of LlamaEdge API Server project. It provides a collection of prompt templates that are used to generate prompts for the LLMs (See models in huggingface.co/second-state).
Prompt Templates
The available prompt templates are listed below:
-
baichuan-2
-
Prompt string
以下内容为人类用户与与一位智能助手的对话。 用户:你好! 助手:
-
Example: second-state/Baichuan2-13B-Chat-GGUF
-
-
codellama-instruct
-
Prompt string
<s>[INST] <<SYS>> Write code to solve the following coding problem that obeys the constraints and passes the example test cases. Please wrap your code answer using ```: <</SYS>> {prompt} [/INST]
-
-
codellama-super-instruct
-
Prompt string
<s>Source: system\n\n {system_prompt} <step> Source: user\n\n {user_message_1} <step> Source: assistant\n\n {ai_message_1} <step> Source: user\n\n {user_message_2} <step> Source: assistant\nDestination: user\n\n
-
-
chatml
-
Prompt string
<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant
-
Example: second-state/Yi-34B-Chat-GGUF
-
-
chatml-tool
-
Prompt string
<|im_start|>system\n{system_message} Here are the available tools: <tools> [{tool_1}, {tool_2}] </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n<tool_call>\n{"arguments": <args-dict>, "name": <function-name>}\n</tool_call><|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant
-
Example
<|im_start|>system\nYou are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]}},"required":["location","format"]}}},{"type":"function","function":{"name":"predict_weather","description":"Predict the weather in 24 hours","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"format":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]}},"required":["location","format"]}}}] </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n<tool_call>\n{"arguments": <args-dict>, "name": <function-name>}\n</tool_call><|im_end|> <|im_start|>user Hey! What is the weather like in Beijing?<|im_end|> <|im_start|>assistant
-
-
-
deepseek-chat
-
Prompt string
User: {user_message_1} Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} Assistant:
-
-
deepseek-chat-2
-
Prompt string
<|begin_of_sentence|>{system_message} User: {user_message_1} Assistant: {assistant_message_1}<|end_of_sentence|>User: {user_message_2} Assistant:
-
-
deepseek-chat-25
-
Prompt string
<|begin_of_sentence|>{system_message}<|User|>{user_message_1}<|Assistant|>{assistant_message_1}<|end_of_sentence|><|User|>{user_message_2}<|Assistant|>
-
-
deepseek-coder
-
Prompt string
{system} ### Instruction: {question_1} ### Response: {answer_1} <|EOT|> ### Instruction: {question_2} ### Response:
-
-
embedding
-
Prompt string This prompt template is only used for embedding models. It works as a placeholder, therefore, it has no concrete prompt string.
-
-
functionary-31
-
Prompt string
<|start_header_id|>system<|end_header_id|> Environment: ipython Cutting Knowledge Date: December 2023 You have access to the following functions: Use the function 'get_current_weather' to 'Get the current weather' {"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"}},"required":["location"]}} Think very carefully before calling functions. If a you choose to call a function ONLY reply in the following format: <{start_tag}={function_name}>{parameters}{end_tag} where start_tag => `<function` parameters => a JSON dict with the function argument name as key and function argument value as value. end_tag => `</function>` Here is an example, <function=example_function_name>{"example_name": "example_value"}</function> Reminder: - If looking for real time information use relevant functions before falling back to brave_search - Function calls MUST follow the specified format, start with <function= and end with </function> - Required parameters MUST be specified - Only call one function at a time - Put the entire function call reply on one line <|eot_id|><|start_header_id|>user<|end_header_id|> What is the weather like in Beijing today?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-
-
functionary-32
-
Prompt string
<|start_header_id|>system<|end_header_id|> You are capable of executing available function(s) if required. Only execute function(s) when absolutely necessary. Ask for the required input to:recipient==all Use JSON for function arguments. Respond in this format: >>>${recipient} ${content} Available functions: // Supported function definitions that should be called when necessary. namespace functions { // Get the current weather type get_current_weather = (_: { // The city and state, e.g. San Francisco, CA location: string, }) => any; } // namespace functions<|eot_id|><|start_header_id|>user<|end_header_id|> What is the weather like in Beijing today?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-
-
gemma-instruct
-
Prompt string
<bos><start_of_turn>user {user_message}<end_of_turn> <start_of_turn>model {model_message}<end_of_turn>model
-
Example: second-state/gemma-2-27b-it-GGUF
-
-
glm-4-chat
-
Prompt string
[gMASK]<|system|> {system_message}<|user|> {user_message_1}<|assistant|> {assistant_message_1}
-
Example: second-state/glm-4-9b-chat-GGUF
-
-
human-assistant
-
Prompt string
Human: {input_1}\n\nAssistant:{output_1}Human: {input_2}\n\nAssistant:
-
-
intel-neural
-
Prompt string
### System: {system} ### User: {usr} ### Assistant:
-
-
llama-2-chat
-
Prompt string
<s>[INST] <<SYS>> {system_message} <</SYS>> {user_message_1} [/INST] {assistant_message} </s><s>[INST] {user_message_2} [/INST]
-
-
llama-3-chat
-
Prompt string
<|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-
-
mediatek-breeze
-
Prompt string
<s>{system_message} [INST] {user_message_1} [/INST] {assistant_message_1} [INST] {user_message_2} [/INST]
-
-
mistral-instruct
-
Prompt string
<s>[INST] {user_message_1} [/INST]{assistant_message_1}</s>[INST] {user_message_2} [/INST]{assistant_message_2}</s>
-
-
mistrallite
-
Prompt string
<|prompter|>{user_message}</s><|assistant|>{assistant_message}</s>
-
Example: second-state/MistralLite-7B-GGUF
-
-
mistral-tool
-
Prompt string
[INST] {user_message_1} [/INST][TOOL_CALLS] [{tool_call_1}]</s>[TOOL_RESULTS]{tool_result_1}[/TOOL_RESULTS]{assistant_message_1}</s>[AVAILABLE_TOOLS] [{tool_1},{tool_2}][/AVAILABLE_TOOLS][INST] {user_message_2} [/INST]
-
Example
[INST] Hey! What is the weather like in Beijing and Tokyo? [/INST][TOOL_CALLS] [{"name":"get_current_weather","arguments":{"location": "Beijing, CN", "format": "celsius"}}]</s>[TOOL_RESULTS]Fine, with a chance of showers.[/TOOL_RESULTS]Today in Auckland, the weather is expected to be partly cloudy with a high chance of showers. Be prepared for possible rain and carry an umbrella if you're venturing outside. Have a great day!</s>[AVAILABLE_TOOLS] [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}},{"type":"function","function":{"name":"predict_weather","description":"Predict the weather in 24 hours","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}][/AVAILABLE_TOOLS][INST] What is the weather like in Beijing now?[/INST]
-
-
-
nemotron-chat
<extra_id_0>System {system_message} <extra_id_1>User {user_message_1}<extra_id_1>Assistant {assistant_message_1} <extra_id_1>User {user_message_2}<extra_id_1>Assistant {assistant_message_2} <extra_id_1>User {user_message_3} <extra_id_1>Assistant\n
-
nemotron-tool
<extra_id_0>System {system_message} <tool> {tool_1} </tool> <tool> {tool_2} </tool> <extra_id_1>User {user_message_1}<extra_id_1>Assistant <toolcall> {tool_call_message} </toolcall> <extra_id_1>Tool {tool_result_message} <extra_id_1>Assistant\n
-
octopus
-
Prompt string
{system_prompt}\n\nQuery: {input_text} \n\nResponse:
-
Example: second-state/Octopus-v2-GGUF
-
-
openchat
-
Prompt string
GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
-
Example: second-state/OpenChat-3.5-0106-GGUF
-
-
phi-2-instruct
-
Prompt string
Instruct: <prompt>\nOutput:
-
Example: second-state/phi-2-GGUF
-
-
phi-3-chat
-
Prompt string
<|system|> {system_message}<|end|> <|user|> {user_message_1}<|end|> <|assistant|> {assistant_message_1}<|end|> <|user|> {user_message_2}<|end|> <|assistant|>
-
-
solar-instruct
-
Prompt string
<s> ### User: {user_message} \### Assistant: {assistant_message}</s>
-
-
stablelm-zephyr
-
Prompt string
<|user|> {prompt}<|endoftext|> <|assistant|>
-
-
vicuna-1.0-chat
-
Prompt string
{system} USER: {prompt} ASSISTANT:
-
-
vicuna-1.1-chat
-
Prompt string
USER: {prompt} ASSISTANT:
-
-
vicuna-llava
-
Prompt string
<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:
-
-
wizard-coder
-
Prompt string
{system} ### Instruction: {instruction} ### Response:
-
-
zephyr
-
Prompt string
<|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|>
-
Example: second-state/Zephyr-7B-Beta-GGUF
-
Dependencies
~13–22MB
~321K SLoC