82 releases (41 stable)

2.11.0 May 20, 2024
2.10.0 Mar 8, 2024
2.3.0 Dec 29, 2023
1.18.0-beta.2 Nov 12, 2023
0.0.1 Dec 17, 2020

#274 in Encoding

MIT/Apache and GPL-3.0 licenses

710KB
13K SLoC

Chewdata

CI Coverage semantic-release

This application is a light ETL in rust that can be used as a connector between systems

Feature Values Description
Generate data - Generate data for testing
Supported formats json [E] , jsonl [E] , csv [D] , toml [D] , xml [D] , yaml [E] , text [E] , parquet [D] Read and Write in these formats
Multi Connectors mongodb [D] , bucket [D], curl [D] , psql [D], local [E], io [E], inmemory [E] Read / Write / Clean data
Multi Http auths basic [D] , bearer [D], jwt [D] Give different possibilities to authenticate the curl
Transform data tera [E] Transform the data in the fly
Configuration formats allowed json [E], yaml [E] The project need a jobs configuration in input
Read data in parallel or sequential mode cursor[E] , offset [E] With this type of paginator, the data can be read in different way
Application Performance Monitoring (APM) apm[D] Send APM logs into Jaeger

[E] - Feature Enabled by default. Use --no-default-features argument to remove all enabled features by default.

[D] - Feature Disabled and must be enabled with the --features argument.

More useful information:

  • It need only rustup
  • No garbage collector
  • Parallel works
  • Cross-platform
  • Use async/await for concurrent execution with zero-cost
  • Read multi files in parallel into the local or in a bucket
  • Search data into multi csv/json/parquet files with S3 select
  • Can be deployed into AWS Lambda
  • The configuration easly versionable
  • Can generate data in the fly for testing purpose
  • Control and validate the data. Handle bad and valid data in a dedicated stream
  • Enable only required feature: --no-default-features --features "toml psql"

Getting started

Setup from source code

Requirement:

Commands to execute:

git clone https://github.com/jmfiaschi/chewdata.git chewdata
cd chewdata
cp .env.dev .env
vim .env // Edit the .env file
make build
make unit-tests
make integration-tests

If all the test pass, the project is ready. read the Makefile in order to see, what kind of shortcut you can use.

If you want some examples to discover this project, go in this section ./examples

Setup from cargo package

Default installation

This command will install the project with all features.

cargo install chewdata

With minimal features

If you need just read/write json file, transform and store them into the local environment.

cargo install chewdata --no-default-features

With custom features

If you want to specify some features to add to your installation

cargo install chewdata --no-default-features --features "xml bucket"

Please, referer to the features documentation.

How to change the log level

If you need to change the log level of the command, you need to define it during the installation.

cargo install chewdata --no-default-features --features "tracing/release_max_level_info"
echo '{"field1":"value1"}' | RUST_LOG=trace chewdata '[{"type":"reader","document":{"type":"json"},"connector":{"type":"io"}},{"type":"writer","document":{"type":"json"},"connector":{"type":"io"}}]'

If you want to filter logs, you can use the directive syntax from tracing_subscriber.

cargo install chewdata --no-default-features --features "tracing/release_max_level_trace"
echo '{"field1":"value1"}' | RUST_LOG=chewdata=trace chewdata '[{"type":"reader","document":{"type":"json"},"connector":{"type":"io"}},{"type":"writer","document":{"type":"json"},"connector":{"type":"io"}}]'

Run

First of all, you can check how the command works with the option --help

chewdata --help
...
USAGE:
    chewdata [OPTIONS] [JSON]

FLAGS:
    -h, --help       Prints help information
    -V, --version    Prints version information

OPTIONS:
    -f, --file <FILE>    Init steps with file configuration in input

ARGS:
    <JSON>    Init steps with a json/hjson configuration in input

Without configuration

It is possible to run the command without configuration, the application will wait until you write json data. By default, the program write json data in the output and the program stop when you enter empty value.

$ cargo run
$ [{"key":"value"},{"name":"test"}]
$ --enter--
[{"key":"value"},{"name":"test"}]

Another examples without configuration and with file in input

$ cat ./data/multi_lines.json | cargo run
[{...}]

or

$ cat ./data/multi_lines.json | make run
[{...}]

or

$ cat ./data/multi_lines.json | chewdata
[{...}]

With configuration

The configuration is usefull to customize a list of steps. It support hjson format in order to enrich it.

$ cat ./data/multi_lines.csv | cargo run '[{"type":"reader","document":{"type":"csv"}},{"type":"writer"}]'
[{...}] // Will transform the csv data into json format

or

$ cat ./data/multi_lines.csv | make run json='[{\"type\":\"reader\",\"document\":{\"type\":\"csv\"}},{\"type\":\"writer\"}]'
[{...}] // Will transform the csv data into json format

or

$ cat ./data/multi_lines.csv | chewdata '[{"type":"reader","document":{"type":"csv"}},{"type":"writer"}]'
[{...}] // Will transform the csv data into json format

Another example, With file configuration in argument

$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | cargo run -- --file my_etl.conf.json
[{...}]

or

$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | make run file=my_etl.conf.json
[{...}]

or

$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | chewdata --file my_etl.conf.json
[{...}]

PS: It's possible to replace Json configuration file by Yaml format.

Chain commands

It is possible to chain chewdata program :

task_A=$(echo '{"variable": "a"}' | chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"/","pattern":"{{ input | json_encode() }}"},{"field":"value","pattern":"10"}]},{"type":"w", "doc":{"type":"jsonl"}}]') &&\
task_B=$(echo '{"variable": "b"}' | chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"/","pattern":"{{ input | json_encode() }}"},{"field":"value","pattern":"20"}]},{"type":"w", "doc":{"type":"jsonl"}}]') &&\
echo $task_A | VAR_B=$task_B chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"var_b","pattern":"{{ get_env(name=\"VAR_B\") }}"},{"field":"result","pattern":"{{ output.var_b.value * input.value }}"},{"field":"var_b","type":"remove"}]},{"type":"w"}]'
[{"result":200}]

How it works ?

This program execute steps from a configuration file that you need to inject in Json or Yaml format :

Example:

[
 {
    "type": "erase",
    "connector": {
        "type": "local",
        "path": "./my_file.out.csv"
    }
 },
 {
    "type": "reader",
    "connector": {
        "type": "local",
        "path": "./my_file.csv"
    }
 },
 {
    "type": "writer",
    "connector": {
        "type": "local",
        "path": "./my_file.out.csv"
    }
 },
 ...
]

These steps are executed in the FIFO order.

All steps are linked together by an input and output context queue. When a step finishes handling data, a new context is created and send into the output queue. The next step will handle this new context. Step1(Context) -> Q1[Contexts] -> StepN(Context) -> QN[Contexts] -> StepN+1(Context) Each step runs asynchronously. Each queue contains a limit that can be customized in the step's configuration.

Check the module step to see the list of steps you can use and their configuration. Check the folder /examples to have some examples how to use and build a configuration file.

List of steps with the configurations

How to contribute ?

Follow the GitHub flow.

Folow the Semantic release Specification

After code modifications, please run all tests.

make test

Dependencies

~23–52MB
~867K SLoC