82 releases (41 stable)
2.11.0 | May 20, 2024 |
---|---|
2.10.0 | Mar 8, 2024 |
2.3.0 | Dec 29, 2023 |
1.18.0-beta.2 | Nov 12, 2023 |
0.0.1 | Dec 17, 2020 |
#274 in Encoding
710KB
13K
SLoC
Chewdata
This application is a light ETL in rust that can be used as a connector between systems
Feature | Values | Description |
---|---|---|
Generate data | - | Generate data for testing |
Supported formats | json [E] , jsonl [E] , csv [D] , toml [D] , xml [D] , yaml [E] , text [E] , parquet [D] |
Read and Write in these formats |
Multi Connectors | mongodb [D] , bucket [D], curl [D] , psql [D], local [E], io [E], inmemory [E] |
Read / Write / Clean data |
Multi Http auths | basic [D] , bearer [D], jwt [D] |
Give different possibilities to authenticate the curl |
Transform data | tera [E] | Transform the data in the fly |
Configuration formats allowed | json [E], yaml [E] |
The project need a jobs configuration in input |
Read data in parallel or sequential mode | cursor [E] , offset [E] |
With this type of paginator, the data can be read in different way |
Application Performance Monitoring (APM) | apm [D] |
Send APM logs into Jaeger |
[E] - Feature
E
nabled by default. Use--no-default-features
argument to remove all enabled features by default.[D] - Feature
D
isabled and must be enabled with the--features
argument.
More useful information:
- It need only rustup
- No garbage collector
- Parallel works
- Cross-platform
- Use async/await for concurrent execution with zero-cost
- Read multi files in parallel into the local or in a bucket
- Search data into multi csv/json/parquet files with S3 select
- Can be deployed into AWS Lambda
- The configuration easly versionable
- Can generate data in the fly for testing purpose
- Control and validate the data. Handle bad and valid data in a dedicated stream
- Enable only required feature: --no-default-features --features "toml psql"
Getting started
Setup from source code
Requirement:
- Rust
- Docker and Docker-compose for testing the code in local
Commands to execute:
git clone https://github.com/jmfiaschi/chewdata.git chewdata
cd chewdata
cp .env.dev .env
vim .env // Edit the .env file
make build
make unit-tests
make integration-tests
If all the test pass, the project is ready. read the Makefile in order to see, what kind of shortcut you can use.
If you want some examples to discover this project, go in this section ./examples
Setup from cargo package
Default installation
This command will install the project with all features.
cargo install chewdata
With minimal features
If you need just read/write json file, transform and store them into the local environment.
cargo install chewdata --no-default-features
With custom features
If you want to specify some features to add to your installation
cargo install chewdata --no-default-features --features "xml bucket"
Please, referer to the features documentation.
How to change the log level
If you need to change the log level of the command, you need to define it during the installation.
cargo install chewdata --no-default-features --features "tracing/release_max_level_info"
echo '{"field1":"value1"}' | RUST_LOG=trace chewdata '[{"type":"reader","document":{"type":"json"},"connector":{"type":"io"}},{"type":"writer","document":{"type":"json"},"connector":{"type":"io"}}]'
If you want to filter logs, you can use the directive syntax from tracing_subscriber.
cargo install chewdata --no-default-features --features "tracing/release_max_level_trace"
echo '{"field1":"value1"}' | RUST_LOG=chewdata=trace chewdata '[{"type":"reader","document":{"type":"json"},"connector":{"type":"io"}},{"type":"writer","document":{"type":"json"},"connector":{"type":"io"}}]'
Run
First of all, you can check how the command works with the option --help
chewdata --help
...
USAGE:
chewdata [OPTIONS] [JSON]
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
-f, --file <FILE> Init steps with file configuration in input
ARGS:
<JSON> Init steps with a json/hjson configuration in input
Without configuration
It is possible to run the command without configuration, the application will wait until you write json
data. By default, the program write json data in the output and the program stop when you enter empty value.
$ cargo run
$ [{"key":"value"},{"name":"test"}]
$ --enter--
[{"key":"value"},{"name":"test"}]
Another examples without configuration and with file in input
$ cat ./data/multi_lines.json | cargo run
[{...}]
or
$ cat ./data/multi_lines.json | make run
[{...}]
or
$ cat ./data/multi_lines.json | chewdata
[{...}]
With configuration
The configuration is usefull to customize a list of steps. It support hjson
format in order to enrich it.
$ cat ./data/multi_lines.csv | cargo run '[{"type":"reader","document":{"type":"csv"}},{"type":"writer"}]'
[{...}] // Will transform the csv data into json format
or
$ cat ./data/multi_lines.csv | make run json='[{\"type\":\"reader\",\"document\":{\"type\":\"csv\"}},{\"type\":\"writer\"}]'
[{...}] // Will transform the csv data into json format
or
$ cat ./data/multi_lines.csv | chewdata '[{"type":"reader","document":{"type":"csv"}},{"type":"writer"}]'
[{...}] // Will transform the csv data into json format
Another example, With file configuration in argument
$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | cargo run -- --file my_etl.conf.json
[{...}]
or
$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | make run file=my_etl.conf.json
[{...}]
or
$ echo '[{"type":"reader","connector":{"type":"io"},"document":{"type":"csv"}},{"type":"writer"}]' > my_etl.conf.json
$ cat ./data/multi_lines.csv | chewdata --file my_etl.conf.json
[{...}]
PS: It's possible to replace Json configuration file by Yaml format.
Chain commands
It is possible to chain chewdata program :
task_A=$(echo '{"variable": "a"}' | chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"/","pattern":"{{ input | json_encode() }}"},{"field":"value","pattern":"10"}]},{"type":"w", "doc":{"type":"jsonl"}}]') &&\
task_B=$(echo '{"variable": "b"}' | chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"/","pattern":"{{ input | json_encode() }}"},{"field":"value","pattern":"20"}]},{"type":"w", "doc":{"type":"jsonl"}}]') &&\
echo $task_A | VAR_B=$task_B chewdata '[{"type":"r"},{"type":"transformer","actions":[{"field":"var_b","pattern":"{{ get_env(name=\"VAR_B\") }}"},{"field":"result","pattern":"{{ output.var_b.value * input.value }}"},{"field":"var_b","type":"remove"}]},{"type":"w"}]'
[{"result":200}]
How it works ?
This program execute steps
from a configuration file that you need to inject in Json
or Yaml
format :
Example:
[
{
"type": "erase",
"connector": {
"type": "local",
"path": "./my_file.out.csv"
}
},
{
"type": "reader",
"connector": {
"type": "local",
"path": "./my_file.csv"
}
},
{
"type": "writer",
"connector": {
"type": "local",
"path": "./my_file.out.csv"
}
},
...
]
These steps
are executed in the FIFO
order.
All steps
are linked together by an input
and output
context queue.
When a step finishes handling data, a new context is created and send into the output queue. The next step will handle this new context.
Step1(Context) -> Q1[Contexts] -> StepN(Context) -> QN[Contexts] -> StepN+1(Context)
Each step runs asynchronously. Each queue contains a limit that can be customized in the step's configuration.
Check the module step
to see the list of steps you can use and their configuration. Check the folder /examples to have some examples how to use and build a configuration file.
List of steps with the configurations
How to contribute ?
Follow the GitHub flow.
Folow the Semantic release Specification
After code modifications, please run all tests.
make test
Useful links
Dependencies
~23–52MB
~867K SLoC