3 releases
0.0.7 | Sep 1, 2024 |
---|---|
0.0.6 | Sep 19, 2023 |
0.0.5 | Feb 5, 2022 |
#18 in #reinforcement
21 downloads per month
Used in border
28KB
361 lines
Derive macros for implementing border_core::Act
and
border_core::generic_replay_buffer::BatchBase
.
Examples
Newtype for BorderAtariAct
#
#[derive(Clone, Debug, Act)]
struct MyAct(BorderAtariAct);
The above code will generate the following implementation:
#
#[derive(Clone, Debug)]
struct MyAct(BorderAtariAct);
impl border_core::Act for MyAct {
fn len(&self) -> usize {
self.0.len()
}
}
impl Into<BorderAtariAct> for MyAct {
fn into(self) -> BorderAtariAct {
self.0
}
}
/// The following code is generated when features="tch" is enabled.
impl From<MyAct> for tch::Tensor {
fn from(act: MyAct) -> tch::Tensor {
let v = vec![act.0.act as i64];
let t: tch::Tensor = std::convert::TryFrom::<Vec<i64>>::try_from(v).unwrap();
t.unsqueeze(0)
}
}
impl From<tch::Tensor> for MyAct {
fn from(t: tch::Tensor) -> Self {
let data: Vec<i64> = {
let t = t.to_dtype(tch::Kind::Int64, false, true);
let n = t.numel();
let mut data = vec![0i64; n];
t.f_copy_data(&mut data, n).unwrap();
data
};
MyAct(BorderAtariAct::new(data[0] as u8))
}
}
Newtype for GymContinuousAct
#
#[derive(Clone, Debug, Act)]
struct MyAct(GymContinuousAct);
The above code will generate the following implementation:
#
#[derive(Clone, Debug)]
struct MyAct(GymContinuousAct);
impl border_core::Act for MyAct {
fn len(&self) -> usize {
self.0.len()
}
}
impl Into<GymContinuousAct> for MyAct {
fn into(self) -> GymContinuousAct {
self.0
}
}
/// The following code is generated when features="tch" is enabled.
impl From<MyAct> for tch::Tensor {
fn from(act: MyAct) -> tch::Tensor {
let v = act.0.act.iter().map(|e| *e as f32).collect::<Vec<_>>();
let t: tch::Tensor = std::convert::TryFrom::<Vec<f32>>::try_from(v).unwrap();
t.unsqueeze(0)
}
}
impl From<tch::Tensor> for MyAct {
/// `t` must be a 1-dimentional tensor of `f32`.
fn from(t: tch::Tensor) -> Self {
let shape = t.size()[1..].iter().map(|x| *x as usize).collect::<Vec<_>>();
use std::convert::TryInto;
let act: Vec<f32> = t.try_into().unwrap();
let act = ndarray::Array1::<f32>::from(act)
.into_shape(ndarray::IxDyn(&shape))
.unwrap();
MyAct(GymContinuousAct::new(act))
}
}
Newtype for GymDiscreteAct
#
#[derive(Clone, Debug, Act)]
struct MyAct(GymDiscreteAct);
The above code will generate the following implementation:
#
#[derive(Clone, Debug)]
struct MyAct(GymDiscreteAct);
impl border_core::Act for MyAct {
fn len(&self) -> usize {
self.0.len()
}
}
impl Into<GymDiscreteAct> for MyAct {
fn into(self) -> GymDiscreteAct {
self.0
}
}
impl From<MyAct> for tch::Tensor {
fn from(act: MyAct) -> tch::Tensor {
let v = act.0.act.iter().map(|e| *e as i64).collect::<Vec<_>>();
let t: tch::Tensor = std::convert::TryFrom::<Vec<i64>>::try_from(v).unwrap();
t.unsqueeze(0)
}
}
impl From<tch::Tensor> for MyAct {
fn from(t: tch::Tensor) -> Self {
use std::convert::TryInto;
let data: Vec<i64> = t.try_into().unwrap();
let data: Vec<_> = data.iter().map(|e| *e as i32).collect();
MyAct(GymDiscreteAct::new(data))
}
}
Newtype for TensorBatch
#
#[derive(Clone, BatchBase)]
struct MyBatch(TensorBatch);
The above code will generate the following implementation:
#
#[derive(Clone)]
struct ObsBatch(TensorBatch);
impl border_core::generic_replay_buffer::BatchBase for ObsBatch {
fn new(capacity: usize) -> Self {
Self(TensorBatch::new(capacity))
}
fn push(&mut self, i: usize, data: Self) {
self.0.push(i, data.0)
}
fn sample(&self, ixs: &Vec<usize>) -> Self {
let buf = self.0.sample(ixs);
Self(buf)
}
}
impl From<TensorBatch> for ObsBatch {
fn from(obs: TensorBatch) -> Self {
ObsBatch(obs)
}
}
impl From<ObsBatch> for tch::Tensor {
fn from(b: ObsBatch) -> Self {
b.0.into()
}
}
Dependencies
~1.6–5MB
~108K SLoC