33 releases
0.14.2 | May 11, 2024 |
---|---|
0.14.0 | Aug 31, 2023 |
0.13.1 | Jan 28, 2023 |
0.13.0 | Mar 30, 2021 |
0.4.0 | Mar 28, 2019 |
#313 in Math
2,057 downloads per month
Used in fit_text
55KB
1K
SLoC
Description
This library provides traits for doing 2D vector geometry operations using either Rust's built-in types or custom types.
For examples and usage details, check out the API Documentation
lib.rs
:
This crate provides traits for doing 2D vector geometry operations using standard types
Scalars
Simple vector math is implemented for vectors with the following scalar types:
u8
-u128
usize
i8
-i128
isize
f32
f64
- Any type that implements
Scalar
f32
and f64
implement FloatingScalar
, which
gives some additional operations only applicable to floating-point numbers.
Each scalar type has an associated module that has type definitions for standard geometric types using that scalar.
For example, instead of writing
let square = <[f32; 4]>::square([0.0; 2], 1.0);
You can instead write
let square = f32::Rect::square([0.0; 2], 1.0);
Vectors
Vectors can be of the following forms:
[T; 2]
(T, T)
- Any type that implements
Vector2
Many 2D Vector operations are supported.
use vector2math::*;
let a = [2, 6];
let b = [4, -1];
assert_eq!(2, a.x());
assert_eq!(-1, b.y());
assert_eq!([-2, -6], a.neg());
assert_eq!([6, 5], a.add(b));
assert_eq!([-2, 7], a.sub(b));
assert_eq!([12, -3], b.mul(3));
assert_eq!([8, -6], b.mul2(a));
assert_eq!([1, 3], a.div(2));
assert_eq!([0, -6], a.div2(b));
assert_eq!(2, a.dot(b));
Vectors that implement FloatingVector2
have additional operations:
use vector2math::*;
assert_eq!(5.0, [3.0, 4.0].mag());
assert_eq!(10.0, [-1.0, -2.0].dist([5.0, 6.0]));
let rotation_calculation = [1.0, 0.0].rotate_about(f64::TAU / 8.0, [0.0; 2]);
let rotation_solution = [2f64.powf(0.5) / 2.0; 2];
assert!(rotation_calculation.sub(rotation_solution).mag() < std::f64::EPSILON);
Rectangles
Many types can be used to define axis-aligned rectangles:
[[T; 2]; 2]
[(T, T); 2]
((T, T), (T, T))
([T; 2], [T; 2])
[T; 4]
(T, T, T, T)
- Any type that implements
Pair
where the associatedPair::Item
type implementsVector2
.
use vector2math::*;
let rect = [1i32, 2, 4, 6];
assert_eq!([1, 2], rect.top_left());
assert_eq!([4, 6], rect.size());
assert_eq!([3, 5], rect.center());
assert_eq!(20, rect.perimeter());
assert_eq!(24, rect.area());
assert!(rect.contains([3, 5]));
let corners = rect.corners();
assert_eq!(corners[0], [1, 2]);
assert_eq!(corners[1], [5, 2]);
assert_eq!(corners[2], [5, 8]);
assert_eq!(corners[3], [1, 8]);
Circles
A few types can be used to define circles:
([T; 2], T)
((T, T), T)
- Any pair of types where the first implements
FloatingVector2
and the second is the vector'sVector2::Scalar
type.
use vector2math::*;
use std::f64;
let circle = ([2.0, 3.0], 4.0);
assert!((circle.circumference() - 25.132_741_228_718_345).abs() < f64::EPSILON);
assert!((circle.area() - 50.265_482_457_436_69).abs() < f64::EPSILON);
assert!(circle.contains([0.0, 1.0]));
assert!(!circle.contains([5.0, 6.0]));
Mapping
Vector, rectangle, and circle types can be easily mapped to different types:
use vector2math::*;
let arrayf32: [f32; 2] = [1.0, 2.0];
let arrayf64: [f64; 2] = arrayf32.map_into();
let pairf64: (f64, f64) = arrayf64.map_into();
let arrayi16: [i16; 2] = pairf64.map_with(|f| f as i16);
assert_eq!(arrayf32, arrayi16.map_into::<f32::Vec2>());
let weird_rect = [(0.0, 1.0), (2.0, 5.0)];
let normal_rectf32: [f32; 4] = weird_rect.map_into();
let normal_rectf64: [f64; 4] = normal_rectf32.map_into();
let normal_rectu8: [u8; 4] = normal_rectf32.map_with(|f| f as u8);
assert_eq!([0, 1, 2, 5], normal_rectu8);
let pair_circlef32 = ((0.0, 1.0), 2.0);
let array_circlef32 = ([0.0, 1.0], 2.0);
assert_eq!(((0.0, 1.0), 2.0), array_circlef32.map_into::<((f64, f64), f64)>());
Transforms
The Transform
trait is used to define 2D vector transforms.
This crate implements Transform
for all types that implement
Pair
where the Pair
's
Item
implments Trio
where the Trio
's Trio::Item
implements FloatingScalar
. This type range includes
everything from [[f32; 3]; 2]
to (f64, f64, f64, f64, f64, f64)
.
Transform
s can be chained and applied to vectors.
use vector2math::*;
let dis = [1.0; 2];
let rot = f32::TAU / 4.0;
let sc = [2.0; 2];
let transform = f32::Trans::identity().translate(dis).rotate(rot).scale(sc);
let v = [3.0, 5.0];
let v1 = v.transform(transform);
let v2 = v.add(dis).rotate(rot).mul2(sc);
assert_eq!(v1, v2);
Implementing traits
Implementing these traits for your own types is simple.
Just make sure that your type is Copy
.
use vector2math::*;
#[derive(Clone, Copy)]
struct MyVector {
x: f64,
y: f64,
}
impl Vector2 for MyVector {
type Scalar = f64;
fn new(x: f64, y: f64) -> Self {
MyVector { x, y }
}
fn x(&self) -> f64 {
self.x
}
fn y(&self) -> f64 {
self.y
}
}
#[derive(Clone, Copy)]
struct MyRectangle {
top_left: MyVector,
size: MyVector,
}
impl Rectangle for MyRectangle {
type Vector = MyVector;
fn new(top_left: MyVector, size: MyVector) -> Self {
MyRectangle { top_left, size }
}
fn top_left(self) -> MyVector {
self.top_left
}
fn size(self) -> MyVector {
self.size
}
}
let rect: MyRectangle = [1, 2, 3, 4].map_into();
assert_eq!(12.0, rect.area());
assert_eq!(6.0, rect.bottom());
Dependencies
~230KB