#automl #developer-tools #metrics #elixir-lang #elixir #machine-learning #golang #js #javascript #tangram

tangram_metrics

Tangram makes it easy for programmers to train, deploy, and monitor machine learning models

4 releases (breaking)

0.7.0 Aug 17, 2021
0.6.0 Jul 19, 2021
0.5.0 Jul 2, 2021
0.4.0 Jun 25, 2021

#14 in #ruby-on-rails

Download history 42/week @ 2022-01-19 82/week @ 2022-01-26 55/week @ 2022-02-02 36/week @ 2022-02-09 19/week @ 2022-02-16 44/week @ 2022-02-23 59/week @ 2022-03-02 45/week @ 2022-03-09 43/week @ 2022-03-16 99/week @ 2022-03-23 31/week @ 2022-03-30 30/week @ 2022-04-06 14/week @ 2022-04-13 7/week @ 2022-04-20 51/week @ 2022-04-27 40/week @ 2022-05-04

114 downloads per month
Used in 6 crates (4 directly)

MIT license

44KB
1K SLoC

Tangram Metrics

This crate is documented using rustdoc. View the docs for the most recent version at https://docs.rs/tangram_metrics or run cargo doc -p tangram_metrics --open in the root of this repository.


lib.rs:

This crate implements a number of metrics such as MeanSquaredError and Accuracy.

Dependencies

~1.5MB
~33K SLoC