9 unstable releases

new 0.7.1 Jan 14, 2025
0.7.0 Oct 16, 2023
0.6.1 Dec 3, 2022
0.6.0 Jun 15, 2022
0.3.1 Mar 11, 2021

#453 in Machine learning

Download history 15/week @ 2024-09-17 48/week @ 2024-09-24 10/week @ 2024-10-01 17/week @ 2024-10-08 19/week @ 2024-10-15 19/week @ 2024-10-22 25/week @ 2024-10-29 34/week @ 2024-11-05 8/week @ 2024-11-12 30/week @ 2024-11-19 23/week @ 2024-11-26 17/week @ 2024-12-03 94/week @ 2024-12-10 13/week @ 2024-12-17

110 downloads per month
Used in 2 crates

MIT/Apache

240KB
4.5K SLoC

Naive Bayes

linfa-bayes provides pure Rust implementations of Naive Bayes algorithms for the Linfa toolkit.

The Big Picture

linfa-bayes is a crate in the linfa ecosystem, an effort to create a toolkit for classical Machine Learning implemented in pure Rust, akin to Python's scikit-learn.

Current state

linfa-bayes currently provides an implementation of the following methods:

Examples

You can find examples in the examples/ directory. To run Gaussian Naive Bayes example, use:

$ cargo run --example winequality --release
Show source code
use linfa::metrics::ToConfusionMatrix;
use linfa::traits::{Fit, Predict};
use linfa_bayes::{GaussianNb, Result};

// Read in the dataset and convert targets to binary data
let (train, valid) = linfa_datasets::winequality()
    .map_targets(|x| if *x > 6 { "good" } else { "bad" })
    .split_with_ratio(0.9);

// Train the model
let model = GaussianNb::params().fit(&train)?;

// Predict the validation dataset
let pred = model.predict(&valid);

// Construct confusion matrix
let cm = pred.confusion_matrix(&valid)?;

// classes    | bad        | good      
// bad        | 130        | 12        
// good       | 7          | 10    
//
// accuracy 0.8805031, MCC 0.45080978
println!("{:?}", cm);
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
# Result::Ok(())

To run Multinomial Naive Bayes example, use:

$ cargo run --example winequality_multinomial --release
Show source code
use linfa::metrics::ToConfusionMatrix;
use linfa::traits::{Fit, Predict};
use linfa_bayes::{MultinomialNb, Result};

// Read in the dataset and convert targets to binary data
let (train, valid) = linfa_datasets::winequality()
    .map_targets(|x| if *x > 6 { "good" } else { "bad" })
    .split_with_ratio(0.9);

// Train the model
let model = MultinomialNb::params().fit(&train)?;

// Predict the validation dataset
let pred = model.predict(&valid);

// Construct confusion matrix
let cm = pred.confusion_matrix(&valid)?;
// classes    | bad        | good      
// bad        | 88         | 54        
// good       | 10         | 7         

// accuracy 0.5974843, MCC 0.02000631
println!("{:?}", cm);
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
# Result::Ok(())

Dependencies

~5MB
~93K SLoC