2 releases
0.1.1 | Apr 14, 2023 |
---|---|
0.1.0 | Apr 13, 2023 |
#323 in Science
22 downloads per month
42KB
724 lines
Rustamath. Library of minimization functions.
Task of minimization: for given function f that depends on one or more independent variables, find the value of those variables where f takes on a minimum value.
Supported methods:
- One Dimension
- Bracket a Minimum
- Golden Section Search
- Brent’s Method
- Brent’s Method using First Derivative
- Multidimensions
- Downhill Simplex Method
Example of Downhill Simplex search
fn test_paraboloid() {
// Paraboloid center at (1,2), scale factors (10, 20), minimum value 30
let p = vec![1.0, 2.0, 10.0, 20.0, 30.0];
let paraboloid = |x: &[f64]| {
// Paraboloid centered on (p[0],p[1]), with scale factors (p[2],p[3]) and minimum p[4]
p[2] * (x[0] - p[0]) * (x[0] - p[0]) + p[3] * (x[1] - p[1]) * (x[1] - p[1]) + p[4]
};
let (min, fmin, nr_iterations) = amoeba(paraboloid, &[100.0, -100.0], 1.1, 1.0e-9, 100);
println!("min: {}, {} fmin: {fmin} iterations: {nr_iterations}", min[0], min[1]);
assert_float_absolute_eq!(min[0], 1.0, 1.0e-4);
assert_float_absolute_eq!(min[1], 2.0, 1.0e-4);
assert_float_absolute_eq!(fmin, 30.0, 1.0e-4);
}
Output:
min: 0.999933263302534, 1.9999850642280714 fmin: 30.000000072002226 iterations: 78
Example of Brent’s Method Using First Derivative
fn test_cosine() {
use super::{golden_section_search, brent_search};
// Minimum at Pi when x ∈ [0, 2*Pi].
let cosine = |x: f64| (x.cos(), -(x.sin()));
let ranges = vec![(0.01, 1.0)];
for range in ranges {
let (xmin, f, nr_iterations) =
brent_df_search(cosine, range.0, range.1, 0.0, 0);
let (xmin_golden, _, nr_iterations_golden) =
golden_section_search(|x| cosine(x).0, range.0, range.1, 0.0, 0);
let (xmin_brent, _, nr_iterations_brent) =
brent_search(|x| cosine(x).0, range.0, range.1, 0.0, 0);
println!("xmin: {:.8} f(xmin): {:6.2} iterations: {} vs brent {} vs golden {}",
xmin, f, nr_iterations, nr_iterations_brent, nr_iterations_golden
);
assert_float_relative_eq!(xmin, std::f64::consts::PI, 1.0e-8);
assert_float_relative_eq!(xmin_brent, std::f64::consts::PI, 1.0e-8);
assert_float_relative_eq!(xmin_golden, std::f64::consts::PI, 1.0e-8);
}
}
Output:
xmin: 3.14159265 f(xmin): -1.00 iterations: 4 vs brent 8 vs golden 36
Dependencies
~27KB