#integration #numerical #physics

quad-rs

Adaptive Gauss-Kronrod Integration in Rust

6 releases

0.2.2 Nov 11, 2024
0.2.1 Oct 11, 2024
0.1.2 Feb 28, 2022

#432 in Math

43 downloads per month
Used in spdcalc

MIT/Apache

97KB
2K SLoC

quad-rs

This crate provides an implementation of adaptive Gauss-Kronrod integration. It aims to provide a suite of integration methods including:

  • Adaptive integration with high-accuracy
  • Native support for complex integrals and paths
  • Native support for contour integration in the complex plane
  • Native support for integration of vector and scalar valued functions
  • Optional storage and return of the integrand at the evaluation points

Overview


A problem to be integrated needs to implement the Integrable trait. This has one method integrand, which takes the integration variable as an argument and returns the integrand. The type of the integration variable Input and the integrand Output must also be defined.

use quad_rs::Integrable;

struct Problem {}

impl Integrable for Problem {
    type Input = f64;
    type Output = f64;
    fn integrand(
        &self,
        input: &Self::Input,
    ) -> Result<Self::Output, quad_rs::EvaluationError<Self::Input>> {
        Ok(input.exp())
    }
}

To solve the problem an Integrator is used

use quad_rs::Integrator;

let integrator = Integrator::default()
    .with_maximum_iter(1000)
    .relative_tolerance(1e-8);

let range = std::ops::Range {
    start: (-1f64),
    end: 1f64,
};

let solution = integrator.integrate(Problem {}, range).unwrap();

Example - Real Integration

use quad_rs::{Integrable, Integrator};

struct Problem {}

impl Integrable for Problem {
    type Input = f64;
    type Output = f64;
    fn integrand(
        &self,
        input: &Self::Input,
    ) -> Result<Self::Output, quad_rs::EvaluationError<Self::Input>> {
        Ok(input.exp())
    }
}

let integrator = Integrator::default()
    .with_maximum_iter(1000)
    .relative_tolerance(1e-8);

let range = std::ops::Range {
    start: (-1f64),
    end: 1f64,
};

let solution = integrator.integrate(Problem {}, range).unwrap();

let analytical_result = std::f64::consts::E - 1. / std::f64::consts::E;

approx::assert_relative_eq!(
    solution.result.result.unwrap(),
    analytical_result,
    max_relative = 1e-10
)

Example - Complex Integration

use quad_rs::{Integrable, Integrator};
use num_complex::Complex;
use std::ops::Range;

struct Problem {}

impl Integrable for Problem {
    type Input = Complex<f64>;
    type Output = Complex<f64>;
    fn integrand(
        &self,
        input: &Self::Input,
    ) -> Result<Self::Output, quad_rs::EvaluationError<Self::Input>> {
        Ok(input.exp())
    }
}

let integrator = Integrator::default()
    .with_maximum_iter(1000)
    .relative_tolerance(1e-8);


let range = Range {
    start: Complex::new(-1f64, -1f64),
    end: Complex::new(1f64, 1f64)
};

let solution = integrator.integrate(Problem {}, range).unwrap();

Example - Real to Complex Integration

use quad_rs::{Integrable, Integrator};
use num_complex::Complex;
use std::ops::Range;

struct Problem {}

impl Integrable for Problem {
    type Input = f64;
    type Output = Complex<f64>;
    fn integrand(
        &self,
        input: &Self::Input,
    ) -> Result<Self::Output, quad_rs::EvaluationError<Self::Input>> {
        Ok(input.exp())
    }
}

let integrator = Integrator::default()
    .with_maximum_iter(1000)
    .relative_tolerance(1e-8);


let range = Range {
    start: (-1f64),
    end: 1f64,
};

let solution = integrator
    .integrate_real_complex(Problem {}, range)
    .unwrap();

let result = solution.result.result.unwrap();

let analytical_result = std::f64::consts::E - 1. / std::f64::consts::E;

dbg!(&result, &analytical_result);

Example - Contour Integration

use quad_rs::{Contour, Direction, Integrable, Integrator}
use num_complex::Complex;

let x_range =-5f64..5f64;
let y_range = -5f64..5f64;
let contour = Contour::generate_rectangular(&x_range, &y_range, Direction::Clockwise);

struct Problem {}

impl Integrable for Problem {
    type Input = Complex<f64>;
    type Output = Complex<f64>;
    fn integrand(
        &self,
        input: &Self::Input,
    ) -> Result<Self::Output, quad_rs::EvaluationError<Self::Input>> {
        Ok(input.exp())
    }
}

let integrator = Integrator::default()
    .with_maximum_iter(1000)
    .relative_tolerance(1e-8);


let solution = integrator.contour_integrate(Problem {}, contour).unwrap();



Dependencies

~7MB
~142K SLoC