22 breaking releases

0.23.0 Apr 26, 2021
0.21.0 Apr 23, 2021
0.20.0 Mar 5, 2021
0.18.0 Nov 20, 2020
0.14.0 Jun 15, 2020

#343 in Algorithms

Download history 10/week @ 2023-01-30 27/week @ 2023-02-06 59/week @ 2023-02-13 104/week @ 2023-02-20 1/week @ 2023-02-27 2/week @ 2023-03-06 1/week @ 2023-03-20 26/week @ 2023-04-03 8/week @ 2023-04-10 26/week @ 2023-04-17 28/week @ 2023-04-24 30/week @ 2023-05-01 53/week @ 2023-05-08 3/week @ 2023-05-15

114 downloads per month




a pragmatic point-free theorem prover assistant

Standard Library

=== Poi Reduce 0.23 ===
Type `help` for more information.
> and[not]
∵ and[not] => or
<=>  not · nor
     ∵ not · nor <=> or
∴ or

To run Poi Reduce from your Terminal, type:

cargo install --example poireduce poi

Then, to run:


Example: Length of concatenated lists

Poi lets you specify a goal and automatically prove it.

For example, when computing the length of two concatenated lists, there is a faster way, which is to compute the length of each list and add them together:

> goal len(a)+len(b)
new goal: (len(a) + len(b))
> len(a++b)
len((a ++ b))
depth: 1 <=>  (len · concat)(a)(b)
     ∵ (f · g)(a)(b) <=> f(g(a)(b))
(len · concat)(a)(b)
(concat[len] · (len · fst, len · snd))(a)(b)
∵ len · concat => concat[len] · (len · fst, len · snd)
(add · (len · fst, len · snd))(a)(b)
∵ concat[len] => add
depth: 0 <=>  ((len · fst)(a)(b) + (len · snd)(a)(b))
     ∵ (f · (g0, g1))(a)(b) <=> f(g0(a)(b))(g1(a)(b))
((len · fst)(a)(b) + (len · snd)(a)(b))
(len(a) + (len · snd)(a)(b))
∵ (f · fst)(a)(_) => f(a)
(len(a) + len(b))
∵ (f · snd)(_)(a) => f(a)
∴ (len(a) + len(b))

The notation concat[len] is a "normal path", which lets you transform into a more efficient program. Normal paths are composable and point-free, unlike their equational representations.

For deep automated theorem proving, Poi uses Levenshtein distance heuristic. This is simply the minimum single-character edit distance in text representation.

Try the following:

> goal a + b + c + d
> d + c + b + a
> auto lev

The command auto lev tells Poi to automatically pick the equivalence with smallest Levenshtein distance found in any sub-proof.

Introduction to Poi and Path Semantics

In "point-free" or "tacit" programming, functions do not identify the arguments (or "points") on which they operate. See Wikipedia article.

Poi is an implementation of a small subset of Path Semantics. In order to explain how Poi works, one needs to explain a bit about Path Semantics.

Path Semantics is an extremely expressive language for mathematical programming, which has a "path-space" in addition to normal computation. If normal programming is 2D, then Path Semantics is 3D. Path Semantics is often used in combination with Category Theory, Logic, etc.

A "path" (or "normal path") is a way of navigating between functions, for example:

and[not] <=> or

Translated into words, this sentence means:

If you flip the input and output bits of an `and` function,
then you can predict the output directly from the input bits
using the function `or`.

In normal programming, there is no way to express this idea directly, but you can represent the logical relationship as an equation:

not(and(a, b)) = or(not(a), not(b))

This is known as one of De Morgan's laws.

When represented as a commutative diagram, one can visualize the dimensions:

         not x not
      o ---------> o           o -------> path-space
      |            |           |  x
  and |            | or        |     x
      V            V           |   x
      o ---------> o           V        x - Sets are points
           not            computation

Computation and paths is like complex numbers where the "real" part is computation and the "imaginary" part is the path.

This is written in asymmetric path notation:

and[not x not -> not] <=> or

In symmetric path notation:

and[not] <=> or

Both computation and path-space are directional, meaning that one can not always find the inverse. Composition in path-space is just function composition:

f[g][h] <=> f[h . g]

If one imagines computation = 2D, then computation + path-space = 3D.

Path Semantics can be thought of as "point-free style" sub-set of equations. This sub-set of equations is particularly helpful in programming.

The Problem of Complexity

Efficient mathematical knowledge useful for programming depends on knowing the identity of functions. This means that the more knowledge you want to build, the more functions you need to name and refer to symbolically.

This means that mathematical theories using a "birds-eye view" are not as useful to solve specific problems, except as a guide to find the solution. The more general and expressive a theory is, the harder it is to do proof search.

As a consequence, theorem proving along both computation + path-space is much harder than just theorem proving for computation.

For example, Type Theory is useful to check that programs are correct, but for higher categories, it becomes increasingly hard to ground the semantics while staying efficient and usable.

Path Semantics uses a different approach, which is based on symbols. When a symbol is created, the theory "commits" to preserving the "paths" from the symbol, which is known in Homotopy Type Theory to correspond to "proofs". Since the symbols themselves encode this relationship to proofs, it means that proofs can be arbitrarily complex without affecting complexity.

This is different from a pure axiomatic system. In a pure axiomatic system, the symbols do not have meaning except the relationship to each other (the axioms). As a result, you get non-standard interpretations of the Peano axioms. In Path Semantics, if you say "the natural numbers", you mean the natural numbers, not the natural numbers as described by the Peano axioms. The symbol "the natural numbers" is the proof of what you mean, using the background of path semantical knowledge to interpret it. This is what the "semantics" in Path Semantics means.

It is possible to express ideas in Path Semantics which are believed to be true, yet can not be proven to be true in any formal language. Someday, a formal language might be invented to prove the sentence true, but programmers do not wait for this to happen. Instead, they default to pragmatic strategies, such as testing extensively. For example, Goldbach's conjecture has been tested up to some limit, so it holds for all natural numbers below that limit. A pragmatic strategy is what you do when you can not idealize the problem away.

Poi uses a pragmatic approach in its design because a lot of proofs in Path Semantics requires no or little type checking in the "point-free style".

Design of Poi

Poi is designed to be used as a Rust library.

It means that anybody can create their own tools on top of Poi, without needing a lot of dependencies.

Poi uses primarily rewriting-rules for theorem proving. This means that the core design is "stupid" and will do dumb things like running in infinite loops when given the wrong rules.

However, this design makes also Poi very flexible, because it can pattern match in any way, independent of computational direction. It is relatively easy to define such rules in Rust code.


Poi uses Piston-Meta to describe its syntax. Piston-Meta is a meta parsing language for human readable text documents. It makes it possible to easily make changes to Poi's grammar, and also preserve backward compatibility.

Since Piston-Meta can describe its own grammar rules, it means that future versions of Piston-Meta can parse grammars of old versions of Poi. The old documents can then be transformed into new versions of Poi using synthesis.

Core Design

At the core of Poi, there is the Expr structure:

/// Function expression.
#[derive(Clone, PartialEq, Debug)]
pub enum Expr {
    /// A symbol that is used together with symbolic knowledge.
    /// Some function that returns a value, ignoring the argument.
    /// This can also be used to store values, since zero arguments is a value.
    /// A binary operation on functions.
    Op(Op, Box<Expr>, Box<Expr>),
    /// A tuple for more than one argument.
    /// A list.

The simplicity of the Expr structure is important and heavily based on advanced path semantical knowledge.

A symbol contains every domain-specific symbol and "avatar extensions" of symbols. An avatar extension is a technique of integrating information processing from building blocks that have no relations for introspection. This means, even some variants of Symbol are not symbols in a direct sense, they are put there because they "integrate information" of symbols. For example, a variable is classified as a 1-avatar since it "integrates information" of a single symbol or expression. "Avatar extensions" occur frequently in Path Semantics for very sophisticated mathematical relations, but usually do not need to be represented explicitly. Instead, they are used as a "guide" to design. See the paper Avatar Graphs for more information.

The Ret variant comes from the notation used in Higher Order Operator Overloading. Instead of describing a value as value, it is thought of as a function of some unknown input type, which returns a known value. For example, if a function returns 2 for all inputs, this is written \2. This means that point-free transformations on functions sometimes can compute stuff, without explicitly needing to reference the concrete value directly. See paper Higher Order Operator Overloading and Existential Path Equations for more information.

The Op variant generalizes binary operators on functions, such as Composition, Path (normal path), Apply (call a function) and Constrain (partial functions).

The Tup variant represents tuples of expressions, where a singleton (a tuple of one element) is "lifted up" one level. This is used e.g. to transition from and[not x not -> not] to and[not] without having to write rules for asymmetric cases.

The List variant represents lists of expressions, e.g. [1, 2, 3]. This differs from Tup by the property that singletons are not "lifted up".

Representing Knowledge

In higher dimensions of functional programming, the definition of "normalization" depends on the domain specific use of a theory. Intuitively, since there are more directions, what counts as progression toward an answer is somewhat chosen arbitrarily. Therefore, the subjectivity of this choice must be reflected in the representation of knowledge.

Poi's representation of knowledge is designed for multi-purposes. Unlike in normal programming, you do not want to always do e.g. evaluation. Instead, you design different tools for different purposes, using the same knowledge.

The Knowledge struct represents mathematical knowledge in form of rules:

/// Represents knowledge about symbols.
pub enum Knowledge {
    /// A symbol has some definition.
    Def(Symbol, Expr),
    /// A reduction from a more complex expression into another by normalization.
    Red(Expr, Expr),
    /// Two expressions that are equivalent but neither normalizes the other.
    Eqv(Expr, Expr),
    /// Two expressions that are equivalent but evaluates from left to right.
    EqvEval(Expr, Expr),

The Def variant represents a definition. A definition is inlined when evaluating an expression.

The Red variant represents what counts as "normalization" in a domain specific theory. It can use computation in the sense of normal evaluation, or use path-space. This rule is directional, which means it pattern matches on the first expression and binds variables, which are synthesized using the second expression.

The Eqv variant represents choices that one can make when traveling along a path. Going in one direction might be as good as another. This is used when it is not clear which direction one should go. This rule is bi-directional, which means one can treat it as a reduction both ways.

The EqvEval variant is similar to Eqv, but when evaluating an expression, it reduces from left to right. This is used on e.g. sin(τ / 8). You usually want the readability of sin(τ / 8) when doing theorem proving. For example, in Poi Reduce, the value of sin(τ / 8) is presented as a choice (equivalence). When evaluating an expression it is desirable to just replace it with the computed value.

What Poi is not

Some people hoped that Poi might be used to solve problems where dependent types are used, but in a more convenient way.

Although Poi uses ideas from dependent types, it is not suitable for other applications of dependent types, e.g. verification of programs by applying it to some immediate representation of machine code.

Normal paths might be used for such applications in the future, but this might require a different architecture.

This implementation is designed for algebraic problems:

  • The object model is restricted to dynamical types
  • Reductions are balanced with equivalences

This means that not everything is provable, because this makes automated theorem proving harder, something that is required for the necessary depth of algebraic solving.