9 releases
0.1.8 | Apr 9, 2024 |
---|---|
0.1.7 | Nov 23, 2023 |
0.1.5 | Oct 1, 2020 |
0.1.4 | Jan 26, 2020 |
0.1.1 | Mar 14, 2017 |
#155 in Math
10KB
166 lines
pihex
Arbitrary place hexadecimal digits viewer of pi written in Rust. The library is based on the Bailey-Borwein-Plouffe formula (BBP formula) and Bellard's formula.
$ pihex
0: 243f 6a88 85a3 08d3 1319 8a2e 0370 7344
$ pihex 1
2: 3f6a 8885 a308 d313 198a 2e03 7073 44a4
$ pihex 4
4: 6a88 85a3 08d3 1319 8a2e 0370 7344 a409
$ pihex 8
128: 9216 d5d9 8979 fb1b d131 0ba6 98df b5ac
$ pihex 65536
65536: 3004 3414 c926 7212 d7fb 8a3f fc7c 7002
$ pihex 1000000
1000000: 6c65 e52c b459 3500 50e4 bb17 8f4c 67a0
$ pihex 10000000
10000000: 7af5 863e fed8 de97 033c d0f6 b80a 3d26
$ pihex 100000000 # defaults to BBP formula
100000000: cb84 0e21 926e c5ae 0d2f 3405 1045 93cb
$ pihex --formula=bellard 100000000 # yields the same result but faster than BBP formula
100000000: cb84 0e21 926e c5ae 0d2f 3405 1045 93cb
Refer to pihex --help
for further details.
Installation
Homebrew
brew install itchyny/tap/pihex
Build from crates.io
cargo install pihex
Build from source
git clone https://github.com/itchyny/pihex
cd pihex
cargo install --path .
Author
itchyny (https://github.com/itchyny)
License
This software is released under the MIT License, see LICENSE.
Disclaimer
I tested very carefully but this software does not always answer correctly due to the floating-point arithmetic inaccuracy. If there's a place with over 53bit zeros in binary representation of pi (I'm not sure where it is), we never ensure the answer calculated by double-precision floating-point numbers is correct. Therefore when you use this software, be careful the answer is not suffered from floating-point calculation errors. If the successive digits in hexadecimal representation repeat '0' or 'f' over 13 times, it's highly inaccurate due to this calculation errors.
References
- David H. Bailey, Peter Borwein, and Simon Plouffe, On the Rapid Computation of Various Polylogarithmic Constants, Mathematics of Computation 66, 903-913, 1997.
- David H. Bailey, The BBP Algorithm for Pi, September 17, 2006.
- Fabrice Bellard, A new formula to compute the n'th binary digit of pi, 1997.
Dependencies
~1.1–1.7MB
~31K SLoC