#graph #graph-node #decomposition #modular #graph-algorithms #undirected-graph

modular-decomposition

A library for computing the modular decomposition of a graph

3 releases (breaking)

0.3.0 Jun 25, 2024
0.2.0 Jun 10, 2024
0.1.0 Mar 12, 2024

#880 in Algorithms

MIT license

84KB
2K SLoC

Modular Decomposition

A library to compute the modular decomposition of a simple, undirected graph.

docs.rs Coverage Status Crates.io Crates.io DOI

A node set M is a module if every node has the same neighborhood outside M. The set of all nodes V and the sets with a single node {u} are trivial modules.

The modular decomposition algorithm in this library has a O(n + m log n) running time and is based on [HPV99] and [CHM02]. Although linear time algorithms exists, they perform worse in comparison.

Examples

The smallest prime graph is the path graph on 4 nodes.

use petgraph::graph::UnGraph;
use modular_decomposition::{ModuleKind, modular_decomposition};

// a path graph with 4 nodes
let graph = UnGraph::<(), ()>::from_edges([(0, 1), (1, 2), (2, 3)]);
let md = modular_decomposition(&graph)?;

assert_eq!(md.module_kind(md.root()), Some(&ModuleKind::Prime));

Determining whether a graph is a cograph.

use petgraph::graph::UnGraph;
use modular_decomposition::{ModuleKind, modular_decomposition};

// a complete graph with 3 nodes
let graph = UnGraph::<(), ()>::from_edges([(0, 1), (0, 2), (1, 2)]);
let md = modular_decomposition(&graph)?;

// a graph is a cograph exactly if none of its modules is prime
let is_cograph = md.module_kinds().all(|kind| *kind != ModuleKind::Prime);
assert!(is_cograph);

// we can also use the method `is_cograph`
assert!(md.is_cograph());

Iterating over twins, true twins or false twins.

use petgraph::graph::{NodeIndex, UnGraph};
use modular_decomposition::modular_decomposition;

let normalize = |sets: &[Vec<NodeIndex>]| -> Vec<Vec<usize>> {
    let mut sets: Vec<Vec<usize>> = sets.iter().map(|nodes| nodes.iter().map(|node| node.index()).collect()).collect();
    sets.iter_mut().for_each(|nodes| nodes.sort());
    sets.sort();
    sets
};

// a K_2 + 2 K_1
let graph = UnGraph::<(), ()>::from_edges([(2, 3)]);
let md = modular_decomposition(&graph)?;

let twins: Vec<_> = md.twins().collect();
assert_eq!(normalize(&twins), [[0, 1], [2, 3]]);

let true_twins: Vec<_> = md.true_twins().collect();
assert_eq!(normalize(&true_twins), [[2, 3]]);

let false_twins: Vec<_> = md.false_twins().collect();
assert_eq!(normalize(&false_twins), [[0, 1]]);

Walking the modular decomposition tree in DFS order.

use petgraph::graph::{NodeIndex, UnGraph};
use modular_decomposition::modular_decomposition;

// some graph
let graph = UnGraph::<(), ()>::from_edges([(2, 3), (3, 4)]);
let md = modular_decomposition(&graph)?;

let mut stack = vec![md.root()];
while let Some(module) = stack.pop() {
    stack.extend(md.children(module));
    // do something with module
    // ...
}

Generics

The algorithm is implemented for structs that implement the petgraph traits NodeCompactIndexable, IntoNeighbors, and GraphProp<EdgeType = Undirected>.

Evaluation

As part of a thesis, we evaluated four implementations of modular decomposition algorithms. The fracture algorithm performs best and is provided in this library. For more information see the repository.

Citing

Jonas Spinner. "A Practical Evaluation of Modular Decomposition Algorithms". https://doi.org/10.5445/IR/1000170363

@mastersthesis{Spinner2024,
    doi          = {10.5445/IR/1000170363},
    url          = {https://doi.org/10.5445/IR/1000170363},
    title        = {A Practical Evaluation of Modular Decomposition Algorithms},
    author       = {Spinner, Jonas},
    year         = {2024},
    publisher    = {{Karlsruher Institut für Technologie (KIT)}},
    school       = {Karlsruher Institut für Technologie (KIT)},
    language     = {english}
}

Dependencies

~2.5MB
~35K SLoC