1 stable release
new 1.0.0 | Feb 19, 2025 |
---|
#363 in Algorithms
140KB
2K
SLoC
____ ____._____ .______ .______ ._______ .___.__
\ \_/ /:_ ___\ : __ \ : \ : ____ |: | \
\___ ___/ | |___| \____|| . || : || : |
/ _ \ | / || : \ | : || |___|| . |
/___/ \___\|. __ || |___\|___| ||___| |___| |
:/ |. ||___| |___| |___|
: :/
:
XGraph: Scalable Graph Algorithms for Real-World Applications. 🦀
A comprehensive Rust library providing efficient graph algorithms for solving real-world problems in social network analysis, transportation optimization, recommendation systems, and more.
🌟 Why xgraph?
- High Performance: Optimized algorithms.
- Flexible Data Model: Store custom attributes for nodes and edges.
- Practical Algorithms: Covering connectivity, shortest paths, community detection, and more.
- Easy Integration: Simple API and serialization support.
💼 Applications:
- Social Network Analysis: Detect key influencers and communities.
- Logistics & Routing: Find shortest and most reliable paths.
- Telecommunication Networks: Identify critical nodes and links.
- Recommendation Systems: Analyze user-item interaction graphs.
A comprehensive graph theory library implementing essential algorithms with full type flexibility and performance.
Features 🌟
- Flexible Graph Structure supporting:
- Directed/Undirected graphs
- Custom node/edge data types
- Weighted edges
- Arbitrary attributes
- Core Algorithms:
- Bridge detection
- Centrality measures (Degree, Betweenness, Closeness)
- Connectivity analysis
- Leiden community detection
- Shortest paths (Dijkstra)
- Dominating set finding
- Cycle detection
- Advanced Operations:
- Adjacency matrix conversion
- Graph validation
- Batch operations
- Attribute management
- Graph transposition
Quick Start 🚀
Basic Usage
use xgraph::graph::Graph;
// Create undirected graph with String nodes and tuple edges
let mut graph = Graph::<f64, String, (f64, String)>::new(false);
// Add nodes with data
let london = graph.add_node("London".into());
let paris = graph.add_node("Paris".into());
// Add weighted edge with metadata
graph.add_edge(london, paris, 343.0, (343.0, "Eurostar".into())).unwrap();
Shortest Paths
use xgraph::algorithms::ShortestPath;
let distances = graph.dijkstra(london);
println!("Paris distance: {}", distances[&paris]); // 343.0
Community Detection
use xgraph::algorithms::leiden_clustering::Leiden;
let mut leiden = Leiden::new(adjacency_matrix, 0.5);
leiden.run();
println!("Communities: {:?}", leiden.get_communities());
Core API Documentation 📚
Graph Structure
pub struct Graph<W: Copy + PartialEq, N: Eq + Hash, E: Debug> {
pub nodes: Slab<Node<W, N>>, // Node storage
pub edges: Slab<Edge<W, E>>, // Edge storage
pub directed: bool, // Graph directionality
}
Node Structure
pub struct Node<W, N> {
pub data: N,
pub neighbors: Vec<(NodeId, W)>,
pub attributes: HashMap<String, String>,
}
Edge Structure
pub struct Edge<W, E> {
pub from: NodeId,
pub to: NodeId,
pub weight: W,
pub data: E,
pub attributes: HashMap<String, String>,
}
Algorithm Traits
Bridges Detection
impl Bridges for Graph {...}
let bridges = graph.find_bridges();
Centrality Measures
impl Centrality for Graph {...}
let betweenness = graph.betweenness_centrality();
Connectivity Analysis
impl Connectivity for Graph {...}
if graph.is_strongly_connected() { ... }
Advanced Features 🔧
Attribute Management
// Node attributes
graph.set_node_attribute(0, "population".into(), "8_982_000".into());
// Edge attributes
graph.set_edge_attribute(0, 1, "transport".into(), "rail".into());
// Retrieval
let pop = graph.get_node_attribute(0, "population");
Matrix Conversions
// To adjacency matrix
let matrix = graph.to_adjacency_matrix();
// From matrix with default values
let graph = Graph::from_adjacency_matrix(
&matrix,
true,
"Station".into(),
("default".into(), 0.0)
).unwrap();
Real-World Examples 🌍
Social Network Analysis
let mut social_graph = Graph::new(false);
// Batch add users
let users = social_graph.add_nodes_batch(
vec!["Alice", "Bob", "Charlie", "Diana"].into_iter()
);
// Create connections
social_graph.add_edges_batch(vec![
(0, 1, 1, ("friends", 2)),
(1, 2, 1, ("colleagues", 5)),
(2, 3, 1, ("family", 10))
]).unwrap();
// Analyze influence
let centrality = social_graph.degree_centrality();
let bridges = social_graph.find_bridges();
Transportation Network Optimization
// Find critical connections
let transport_bridges = transport_graph.find_bridges();
// Calculate optimal depot routes
let depot_distances = transport_graph.dijkstra(main_depot);
// Cluster service regions
let mut leiden = Leiden::new(transport_weights, 0.75);
leiden.run();
let service_regions = leiden.get_communities();
Full example of basic usage:
use std::collections::HashMap;
use xgraph::algorithms::connectivity::Connectivity;
use xgraph::algorithms::leiden_clustering::{CommunityConfig, CommunityDetection};
use xgraph::algorithms::wiedemann_ford::DominatingSetFinder;
use xgraph::prelude::{bridges::Bridges, centrality::Centrality, search::Search, *};
type WeightType = u32; // Main type for edge weights
/// Function to create a graph from an adjacency matrix.
///
/// # Arguments
/// * `matrix` - A vector of vectors representing the adjacency matrix of the graph.
/// * `directed` - A boolean indicating whether the graph is directed.
///
/// # Returns
/// A `Graph<WeightType, (), ()>` object created from the given matrix.
fn create_graph_from_matrix(
matrix: Vec<Vec<WeightType>>,
directed: bool,
) -> Graph<WeightType, (), ()> {
Graph::from_adjacency_matrix(&matrix, directed, (), ())
.expect("Failed to create graph from matrix")
}
/// Function to print details of the graph nodes and edges.
///
/// # Arguments
/// * `graph` - A reference to the `Graph<WeightType, (), ()>` object.
fn print_graph_details(graph: &Graph<WeightType, (), ()>) {
let nodes: Vec<(usize, &())> = graph.all_nodes().collect(); // Explicitly specify the type of vertices
let edges = graph.get_all_edges();
println!("\n================== Graph Details ==================");
println!(
"Nodes ({}): {:?}",
nodes.len(),
nodes.iter().map(|(id, _)| id).collect::<Vec<_>>()
);
println!("Edges ({}): {:?}", edges.len(), edges);
}
/// Function to analyze the graph and print the results.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn analyze_graph(graph: &mut Graph<WeightType, (), ()>) {
println!("\n================== Graph Analysis ==================");
// 1. Basic metrics of the graph
let num_nodes = graph.nodes.len();
let num_edges = graph.get_all_edges().len();
print_metrics(num_nodes, num_edges, graph.directed);
// 2. Connectivity and paths
print_connectivity(graph, num_nodes);
// 3. Centrality
print_centrality(graph);
// 4-5. Node and edge attributes
print_attributes(graph);
// 6. Bridges
print_bridges(graph);
// 7. Connected components
print_connected_components(graph);
// 8. Graph density
print_density(num_nodes, num_edges, graph.directed);
// 9. Example usage of the Wiedemann-Ford algorithm
print_wiedemann_ford(graph);
}
// Separate functions to improve readability
/// Function to print basic metrics of the graph.
///
/// # Arguments
/// * `nodes` - Number of nodes in the graph.
/// * `edges` - Number of edges in the graph.
/// * `directed` - A boolean indicating whether the graph is directed.
fn print_metrics(nodes: usize, edges: usize, directed: bool) {
println!("\n[Basic Metrics]");
println!("Number of nodes: {}", nodes);
println!("Number of edges: {}", edges);
println!(
"Type of graph: {}",
if directed { "directed" } else { "undirected" }
);
}
/// Function to print connectivity and path information.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
/// * `node_count` - Number of nodes in the graph.
fn print_connectivity(graph: &mut Graph<WeightType, (), ()>, node_count: usize) {
println!("\n[Connectivity and Paths]");
if node_count >= 6 {
println!("Path from 0 to 5 exists: {}", graph.has_path(0, 5));
println!("Shortest path 0->5: {:?}", graph.bfs_path(0, 5));
}
}
/// Function to print centrality information of the graph.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn print_centrality(graph: &mut Graph<WeightType, (), ()>) {
println!("\n[Centrality]");
let centrality = graph.degree_centrality();
println!("Degree centrality:");
centrality
.iter()
.for_each(|(node, val)| println!(" Node {}: {:.2}", node, val));
}
/// Function to print attributes of nodes and edges.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn print_attributes(graph: &mut Graph<WeightType, (), ()>) {
// Node attributes (unchanged)
let node_attrs = graph
.nodes
.iter()
.flat_map(|(id, node)| node.attributes.iter().map(move |(k, v)| (k, v, id)))
.fold(HashMap::new(), |mut acc, (k, v, id)| {
acc.entry(k)
.or_insert(HashMap::new())
.entry(v)
.or_insert(Vec::new())
.push(id);
acc
});
println!("\n[Node Attributes]");
if node_attrs.is_empty() {
println!("No node attributes");
} else {
node_attrs.iter().for_each(|(attr, values)| {
println!("Attribute '{}':", attr);
values
.iter()
.for_each(|(val, ids)| println!(" {}: {} nodes ({:?})", val, ids.len(), ids));
});
}
// Edge attributes (fixed version)
let edge_attrs = graph
.get_all_edges()
.iter()
.flat_map(|(from, to, weight, _)| {
graph
.get_all_edge_attributes(*from, *to)
.into_iter()
.flat_map(|attrs| attrs.iter())
.map(move |(k, v)| (k.clone(), v.clone(), (*from, *to, *weight)))
})
.fold(HashMap::new(), |mut acc, (k, v, edge)| {
acc.entry(k)
.or_insert(HashMap::new())
.entry(v)
.or_insert(Vec::new())
.push(edge);
acc
});
println!("\n[Edge Attributes]");
if edge_attrs.is_empty() {
println!("No edge attributes");
} else {
edge_attrs.iter().for_each(|(attr, values)| {
println!("Attribute '{}':", attr);
values.iter().for_each(|(val, edges)| {
println!(" {}: {} edges ({:?})", val, edges.len(), edges)
});
});
}
}
/// Function to print bridges (critical edges) of the graph.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn print_bridges(graph: &mut Graph<WeightType, (), ()>) {
println!("\n[Bridges]");
let bridges = graph.find_bridges();
println!("Bridges (critical edges): {:?}", bridges);
}
/// Function to print connected components of the graph.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn print_connected_components(graph: &mut Graph<WeightType, (), ()>) {
println!("\n[Connected Components]");
let components = if graph.is_directed() {
// For directed graphs, show both types of components
println!("Strongly connected components:");
let scc = graph.find_strongly_connected_components();
println!(" Count: {}", scc.len());
println!("Weakly connected components:");
let wcc = graph.find_weakly_connected_components();
println!(" Count: {}", wcc.len());
wcc
} else {
// For undirected graphs, regular components
graph.find_connected_components()
};
components
.iter()
.enumerate()
.for_each(|(i, c)| println!(" Component {}: {} nodes", i, c.len()));
println!("Overall connectivity: {}", graph.is_connected());
// Additional connectivity checks
println!("\nAdditional checks:");
println!("Weakly connected: {}", graph.is_weakly_connected());
if graph.is_directed() {
println!("Strongly connected: {}", graph.is_strongly_connected());
}
}
/// Function to print density of the graph.
///
/// # Arguments
/// * `nodes` - Number of nodes in the graph.
/// * `edges` - Number of edges in the graph.
/// * `directed` - Indicates if the graph is directed.
fn print_density(nodes: usize, edges: usize, directed: bool) {
println!("\n[Density]");
let density = calculate_density(nodes, edges, directed);
println!("Density: {:.4}\n", density);
}
/// Function to calculate the density of the graph.
///
/// # Arguments
/// * `nodes` - Number of nodes in the graph.
/// * `edges` - Number of edges in the graph.
/// * `directed` - Indicates if the graph is directed.
///
/// Returns:
/// The calculated density as a float.
fn calculate_density(nodes: usize, edges: usize, directed: bool) -> f64 {
if nodes <= 1 {
return 0.0;
}
let possible_edges = if directed {
nodes * (nodes - 1)
} else {
nodes * (nodes - 1) / 2
};
edges as f64 / possible_edges as f64
}
/// Function to print results of the Wiedemann-Ford algorithm on the graph.
///
/// # Arguments
/// * `graph` - A mutable reference to the `Graph<WeightType, (), ()>` object.
fn print_wiedemann_ford(graph: &mut Graph<WeightType, (), ()>) {
let dominating_set = graph.find_dominating_set();
println!("\n[Wiedemann-Ford: Dominating Set]");
println!("Dominating set: {:?}", dominating_set);
}
/// Function to perform Leiden clustering on the graph.
///
/// # Arguments
/// * `graph` - A reference to the `Graph<WeightType, (), ()>` object.
fn perform_clustering(graph: &Graph<WeightType, (), ()>) {
let resolutions = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.5];
let gammas = [0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2];
const LEIDEN_ITERATIONS: usize = 10;
println!("\n================ Leiden Clustering Experiments ================");
for (i, &resolution) in resolutions.iter().enumerate() {
for (j, &gamma) in gammas.iter().enumerate() {
let config = CommunityConfig {
gamma,
resolution,
iterations: LEIDEN_ITERATIONS,
};
let communities = graph.detect_communities_with_config(config);
println!("\nExperiment #{}-{}", i + 1, j + 1);
println!(
"Parameters: γ = {:.1}, resolution = {:.1}",
gamma, resolution
);
println!("Found {} communities:", communities.len());
communities
.iter()
.enumerate()
.for_each(|(idx, (comm_id, nodes))| {
println!(
" Cluster {} (ID: {}): {} nodes : {:?}",
idx + 1,
comm_id,
nodes.len(),
nodes
);
});
}
}
}
fn main() {
let matrix = vec![
vec![0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
vec![1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
vec![1, 1, 0, 1, 0, 0, 0, 0, 0, 0],
vec![0, 0, 1, 0, 1, 1, 0, 0, 0, 0],
vec![0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
vec![0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
vec![0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
vec![0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
vec![0, 0, 0, 0, 0, 0, 1, 1, 0, 1],
vec![0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
];
let mut graph = create_graph_from_matrix(matrix, true);
let _ = graph.set_node_attribute(1, "color".into(), "red".into());
let _ = graph.set_node_attribute(2, "color".into(), "blue".into());
let _ = graph.set_edge_attribute(1, 2, "type".into(), "road".into());
let _ = graph.set_edge_attribute(2, 3, "type".into(), "rail".into());
print_graph_details(&graph);
analyze_graph(&mut graph);
perform_clustering(&graph);
}
Testing & Validation ✅
Run comprehensive tests:
cargo test
running 37 tests
test algorithms::bridges::tests::test_find_bridges_complex ... ok
test algorithms::bridges::tests::test_find_bridges_empty_graph ... ok
test algorithms::bridges::tests::test_find_bridges_no_bridges ... ok
test algorithms::bridges::tests::test_find_bridges_simple ... ok
test algorithms::bridges::tests::test_find_bridges_single_node ... ok
test algorithms::centrality::tests::test_betweenness_centrality ... ok
test algorithms::centrality::tests::test_degree_centrality ... ok
test algorithms::centrality::tests::test_closeness_centrality ... ok
test algorithms::centrality::tests::test_empty_graph ... ok
test algorithms::connectivity::tests::test_transpose ... ok
test algorithms::connectivity::tests::test_strongly_connected ... ok
test algorithms::connectivity::tests::test_weak_connectivity ... ok
test algorithms::search::tests::test_bfs_path ... ok
test algorithms::search::tests::test_cycle_detection_directed ... ok
test algorithms::search::tests::test_cycle_detection_undirected ... ok
test algorithms::search::tests::test_dfs ... ok
test algorithms::search::tests::test_has_path ... ok
test algorithms::search::tests::test_invalid_nodes ... ok
test algorithms::search::tests::test_no_cycle_directed ... ok
test algorithms::search::tests::test_no_cycle_undirected ... ok
test algorithms::shortest_path::tests::test_dijkstra_basic ... ok
test algorithms::shortest_path::tests::test_unreachable_node ... ok
test algorithms::wiedemann_ford::tests::test_complex_dominating_set ... ok
test algorithms::wiedemann_ford::tests::test_simple_dominating_set ... ok
test graph::graph::tests::test_attributes ... ok
test graph::graph::tests::test_complete_graph ... ok
test graph::graph::tests::test_directed_graph ... ok
test graph::graph::tests::test_disconnected_graph ... ok
test graph::graph::tests::test_empty_graph ... ok
test algorithms::leiden_clustering::tests::test_community_connection ... ok
test graph::graph::tests::test_graph_validation ... ok
test graph::graph::tests::test_mixed_types ... ok
test graph::graph::tests::test_mixed_weight_types ... ok
test graph::graph::tests::test_varied_node_edge_types ... ok
test utils::reverse::tests::test_reverse_eq ... ok
test utils::reverse::tests::test_reverse_ord ... ok
test utils::reverse::tests::test_reverse_partial_ord ... ok
test result: ok. 37 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s
Test coverage includes:
- Graph manipulation invariants
- Algorithm correctness checks
- Edge case handling
- Memory safety verification
License 📄
MIT License - See LICENSE for details.
Dependencies
~1.5MB
~25K SLoC