## graph-cycles

Detect all cycles in a petgraph graph

### 1 unstable release

 0.1.0 Jan 13, 2023

#1518 in Math

3,237 downloads per month
Used in 25 crates (2 directly)

MIT/Apache

10KB
144 lines

# graph-cycles

Find all cycles in a graph

A naive implementation of Johnson's algorithm to find all cycles in a graph. Based on petgraph.

## Example

The triangle graph has exactly one cycle, namely the full graph itself.

``````use graph_cycles::Cycles;
use petgraph::graph::Graph;

let g = Graph::<(), ()>::from_edges([(0, 1), (1, 2), (2, 0)]);

// find all cycles
let cycles = g.cycles();
assert_eq!(cycles.len(), 1);
assert_eq!(cycles[0].len(), 3);

// print each cycle in turn
g.visit_all_cycles(|_g, c| {
println!("Found new cycle with vertices {c:?}");
});
``````

## Caveats

This crate is essentially untested.

## References

Donald B. Johnson, Finding all the elementary circuits of a directed graph, SIAM Journal on Computing, 1975.

License: MIT or Apache-2.0

### `lib.rs`:

Find all cycles in a graph

A naive implementation of Johnson's algorithm to find all cycles in a graph. Based on petgraph.

# Example

The triangle graph has exactly one cycle, namely the full graph itself.

``````use graph_cycles::Cycles;
use petgraph::graph::Graph;

let g = Graph::<(), ()>::from_edges([(0, 1), (1, 2), (2, 0)]);

// find all cycles
let cycles = g.cycles();
assert_eq!(cycles.len(), 1);
assert_eq!(cycles[0].len(), 3);

// print each cycle in turn
g.visit_all_cycles(|_g, c| {
println!("Found new cycle with vertices {c:?}");
});
``````

# Caveats

This crate is essentially untested.

# References

Donald B. Johnson, Finding all the elementary circuits of a directed graph, SIAM Journal on Computing, 1975.

The node identifier of the underlying graph

~3MB
~57K SLoC