12 releases
0.1.11 | Oct 28, 2022 |
---|---|
0.1.10 | Oct 28, 2022 |
#1418 in Math
49KB
998 lines
Table of Contents
finite fields
A Rust library for operations on finite field, featuring:
- Sum, difference, product, and quotient of elements Fp
- Sum, difference, product, and quotient of elements GF(pn)
- Obtaining the primitive polynomial
- Sum, difference, product, quotient, and remainder of polynomial over Fp
- Sum, difference, product, quotient, and remainder of polynomial over GF(pn)
- Sum, product of Matrix Fp
- Sum, product of Matrix GF(pn)
- The sweep method (or Gaussian elimination) of matrices on finite bodies (Fp, GF(pn)) is also available.
What makes it different from other libraries?
Pros:
- Can be calculated with Fp, GF(pn) for any prime and any multiplier, not limited to a char 2.
- Can freely compute six types of element: prime field, Galois field, polynomial of prime field, polynomial of Galois field, matrix of prime field, and matrix of Galois field.
- Each can be calculated with +-*/, so you can write natural code.
- Matrix operations on finite field (Fp, GF(pn)) can also be performed.
- The sweep method can be available.
Cons:
- It takes longer than other libraries because it is not optimized for each character.
Usage
Add this to your Cargo.toml:
[dependencies]
galois_field = "0.1.11"
Examples
Prime Field
use galois_field::*;
let char: u32 = 5;
let x:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:0} // 0 in F_5
};
let y:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:1} // 1 in F_5
};
println!("x + y = {:?}", (x.clone() + y.clone()).element); // ->1
println!("x - y = {:?}", (x.clone() - y.clone()).element); // -> 4
println!("x * y = {:?}", (x.clone() * y.clone()).element); // -> 0
println!("x / y = {:?}", (x.clone() / y.clone()).element); // -> 0
Galois Field
use galois_field::*;
fn main(){
// consider GF(2^4)
let char: u32 = 2;
let n = 4;
let primitive_polynomial = Polynomial::get_primitive_polynomial(char, n);
let x:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,1] = x -> 2 over GF(2^4)
};
let y:FiniteField = FiniteField{
char: char,
element:Element::GaloisField{element:vec![0,0,1,1],primitive_polynomial:primitive_polynomial.clone()} // i.e. [0,0,1,1] = x^3 + x^2 -> 12 over GF(2^4)
};
println!("x + y = {:?}", (x.clone() + y.clone()).element);
println!("x - y = {:?}", (x.clone() - y.clone()).element);
println!("x * y = {:?}", (x.clone() * y.clone()).element);
println!("x / y = {:?}", (x.clone() / y.clone()).element);
}
Polynomial over Fp
use galois_field::*;
fn main() {
// character
let char: u32 = 2;
let element0:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:0} // 0 in F_5
};
let element1:FiniteField = FiniteField{
char: char,
element:Element::PrimeField{element:1} // 1 in F_5
};
let f: Polynomial = Polynomial {
coef: vec![element1.clone(),element0.clone(),element0.clone(),element0.clone(),element1.clone()]
};
let g: Polynomial = Polynomial {
coef: vec![element1.clone(),element0.clone(),element0.clone(),element1.clone(),element1.clone()]
};
println!("f + g = {:?}", (f.clone()+g.clone()).coef);
println!("f - g = {:?}", (f.clone()-g.clone()).coef);
println!("f * g = {:?}", (f.clone()*g.clone()).coef);
println!("f / g = {:?}", (f.clone()/g.clone()).coef);
println!("f % g = {:?}", (f.clone()%g.clone()).coef);
}
Polynomial over GF(pn)
Same as above
Matrix over FiniteField
use galois_field::*;
let char = 3;
let element0: FiniteField = FiniteField {
char: char,
element: Element::PrimeField { element: 0 },
};
let element1: FiniteField = FiniteField {
char: char,
element: Element::PrimeField { element: 1 },
};
let element2: FiniteField = FiniteField {
char: char,
element: Element::PrimeField { element: 2 },
};
let mut matrix_element:Vec<Vec<FiniteField>> = vec![
vec![element0.clone(),element1.clone(), element0.clone()],
vec![element2.clone(),element2.clone(), element1.clone()],
vec![element1.clone(),element0.clone(), element1.clone()]
];
let mut matrix = Matrix{
element: matrix_element,
};
println!("m+m = {:?}", m.clone()+m.clone());
println!("m*m = {:?}", m.clone()*m.clone());
let mut sweep_matrix = m.sweep_method();
println!("{:?}", sweep_matrix);