#cryptography #finite-fields #elliptic-curves

dev ark-mnt6-298

The MNT6-298 pairing-friendly elliptic curve

5 unstable releases

0.4.0 Jan 17, 2023
0.4.0-alpha.2 Dec 28, 2022
0.4.0-alpha.1 Nov 29, 2022
0.3.0 Jun 6, 2021
0.2.0 Mar 25, 2021

#298 in Cryptography

Download history 71/week @ 2022-11-28 86/week @ 2022-12-05 391/week @ 2022-12-12 389/week @ 2022-12-19 108/week @ 2022-12-26 87/week @ 2023-01-02 255/week @ 2023-01-09 250/week @ 2023-01-16 134/week @ 2023-01-23 148/week @ 2023-01-30 86/week @ 2023-02-06 74/week @ 2023-02-13 165/week @ 2023-02-20 86/week @ 2023-02-27 109/week @ 2023-03-06 100/week @ 2023-03-13

469 downloads per month
Used in 7 crates

MIT/Apache

45KB
551 lines

This library implements the MNT6_298 curve generated in [BCTV14]. The name denotes that it is a Miyaji--Nakabayashi--Takano curve of embedding degree 6, defined over a 298-bit (prime) field. The main feature of this curve is that its scalar field and base field respectively equal the base field and scalar field of MNT4_298.

Curve information:

  • Base field: q = 475922286169261325753349249653048451545124878552823515553267735739164647307408490559963137
  • Scalar field: r = 475922286169261325753349249653048451545124879242694725395555128576210262817955800483758081
  • valuation(q - 1, 2) = 34
  • valuation(r - 1, 2) = 17
  • G1 curve equation: y^2 = x^3 + ax + b, where
    • a = 11
    • b = 106700080510851735677967319632585352256454251201367587890185989362936000262606668469523074
  • G2 curve equation: y^2 = x^3 + Ax + B, where
    • A = Fq2 = (0, 0, a)
    • B = Fq2(b * NON_RESIDUE, 0, 0)
    • NON_RESIDUE = 5 is the cubic non-residue used to construct the field extension Fq3

Dependencies

~4.5MB
~95K SLoC