#elliptic-curve #finite-fields

no-std ark-bw6-761

The BW6-761 pairing-friendly elliptic curve

7 unstable releases

0.5.0 Oct 28, 2024
0.5.0-alpha.0 Jun 20, 2024
0.4.0 Jan 17, 2023
0.4.0-alpha.2 Dec 28, 2022
0.2.0 Mar 25, 2021

#1614 in Cryptography

Download history 34496/week @ 2024-08-20 46902/week @ 2024-08-27 50875/week @ 2024-09-03 42997/week @ 2024-09-10 42530/week @ 2024-09-17 42466/week @ 2024-09-24 45714/week @ 2024-10-01 41232/week @ 2024-10-08 44636/week @ 2024-10-15 43151/week @ 2024-10-22 39036/week @ 2024-10-29 48152/week @ 2024-11-05 38677/week @ 2024-11-12 38449/week @ 2024-11-19 37982/week @ 2024-11-26 27960/week @ 2024-12-03

152,231 downloads per month
Used in 20 crates (6 directly)

MIT/Apache

710KB
15K SLoC

This library implements the BW6_761 curve generated in [EG20]. The name denotes that it is a curve generated using the Brezing--Weng method, and that its embedding degree is 6. The main feature of this curve is that the scalar field equals the base field of the BLS12_377 curve.

Curve information:

  • Base field: q = 6891450384315732539396789682275657542479668912536150109513790160209623422243491736087683183289411687640864567753786613451161759120554247759349511699125301598951605099378508850372543631423596795951899700429969112842764913119068299
  • Scalar field: r = 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177
  • valuation(q - 1, 2) = 1
  • valuation(r - 1, 2) = 46

G1 curve equation: y^2 = x^3 + ax + b, where

  • a = 0,
  • b = -1,

G2 curve equation: y^2 = x^3 + Ax + B

  • A = 0
  • B = 4

Dependencies

~4.5MB
~83K SLoC