3 releases (breaking)

0.3.0 Oct 28, 2024
0.2.0 Aug 27, 2024
0.1.1 Jul 19, 2024

#149 in Algorithms

Download history 329/week @ 2024-09-19 366/week @ 2024-09-26 303/week @ 2024-10-03 271/week @ 2024-10-10 292/week @ 2024-10-17 559/week @ 2024-10-24 641/week @ 2024-10-31 529/week @ 2024-11-07 388/week @ 2024-11-14 531/week @ 2024-11-21 561/week @ 2024-11-28 1143/week @ 2024-12-05 934/week @ 2024-12-12 502/week @ 2024-12-19 255/week @ 2024-12-26 647/week @ 2025-01-02

2,628 downloads per month
Used in 19 crates (4 directly)

MIT/Apache

1MB
21K SLoC

CubeCL Linear Algebra Library.

The crate contains common linear algebra algorithms.

Algorithms

  • Tiling 2D Matrix Multiplication.

    The kernel is very flexible and can be used on pretty much any hardware.

  • Cooperative Matrix Multiplication.

    The kernel is using Automatic Mixed Precision (AMP) to leverage cooperative matrix-multiply and accumulate instructions. For f32 tensors, the inputs are casted into f16, but the accumulation is still performed in f32. This may cause a small lost in precision, but with way faster execution.

Benchmarks

You can run the benchmarks from the workspace with the following:

cargo bench --bench matmul --features wgpu # for wgpu
cargo bench --bench matmul --features cuda # for cuda

On an RTX 3070 we get the following results:

matmul-wgpu-f32-tiling2d

―――――――― Result ―――――――――
  Samples     100
  Mean        13.289ms
  Variance    28.000ns
  Median      13.271ms
  Min         12.582ms
  Max         13.768ms
―――――――――――――――――――――――――
matmul-cuda-f32-tiling2d

―――――――― Result ―――――――――
  Samples     100
  Mean        12.754ms
  Variance    93.000ns
  Median      12.647ms
  Min         12.393ms
  Max         14.501ms
―――――――――――――――――――――――――
matmul-cuda-f32-cmma

―――――――― Result ―――――――――
  Samples     100
  Mean        4.996ms
  Variance    35.000ns
  Median      5.084ms
  Min         4.304ms
  Max         5.155ms
―――――――――――――――――――――――――

Dependencies

~5–18MB
~186K SLoC