7 unstable releases
0.3.0 | Mar 29, 2022 |
---|---|
0.2.0 | Mar 23, 2020 |
0.1.2 | Oct 28, 2019 |
0.1.0 | Sep 19, 2019 |
0.0.2 | Aug 27, 2019 |
#519 in Algorithms
29 downloads per month
Used in 4 crates
(via simple-soft-float)
660KB
17K
SLoC
Algebraic Numbers Library
Use when you need exact arithmetic, speed is not critical, and rational numbers aren't good enough.
Example:
use algebraics::prelude::*;
use algebraics::RealAlgebraicNumber as Number;
let two = Number::from(2);
// 2 is a rational number
assert!(two.is_rational());
// 1/2 is the reciprocal of 2
let one_half = two.recip();
// 1/2 is also a rational number
assert!(one_half.is_rational());
// 2^(1/4)
let root = (&two).pow((1, 4));
// we can use all the standard comparison operators
assert!(root != Number::from(3));
assert!(root < Number::from(2));
assert!(root > Number::from(1));
// we can use all of add, subtract, multiply, divide, and remainder
let sum = &root + &root;
let difference = &root - Number::from(47);
let product = &root * &one_half;
let quotient = &one_half / &root;
let remainder = &root % &one_half;
// root is not a rational number
assert!(!root.is_rational());
// the calculations are always exact
assert_eq!((&root).pow(4), two);
// lets compute 30 decimal places of root
let scale = Number::from(10).pow(30);
let scaled = &root * scale;
let digits = scaled.into_integer_trunc();
assert_eq!(
digits.to_string(),
1_18920_71150_02721_06671_74999_70560u128.to_string()
);
// get the minimal polynomial
let other_number = root + two.pow((1, 2));
assert_eq!(
&other_number.minimal_polynomial().to_string(),
"2 + -8*X + -4*X^2 + 0*X^3 + 1*X^4"
);
// works with really big numbers
let really_big = Number::from(1_00000_00000i64).pow(20) + Number::from(23);
assert_eq!(
&really_big.to_integer_floor().to_string(),
"100000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000\
000000000000000000000000000000000000000000000\
000000000000000000023"
)
Python support
Using algebraics from Python:
python3 -m pip install algebraics
from algebraics import RealAlgebraicNumber
sqrt_2 = 2 ** (RealAlgebraicNumber(1) / 2)
assert sqrt_2 * sqrt_2 == 2
Using algebraics in your own Rust project:
[dependencies.algebraics]
version = "0.3"
Developing algebraics:
cargo install maturin
maturin develop --cargo-extra-args="--features python-extension"
Dependencies
~0.8–6MB
~31K SLoC