5 releases
new 0.1.4 | Oct 31, 2024 |
---|---|
0.1.3 | Oct 29, 2024 |
0.1.2 | Oct 27, 2024 |
0.1.1 | Oct 26, 2024 |
0.1.0 | Oct 26, 2024 |
#581 in Algorithms
631 downloads per month
40KB
390 lines
Statement - An Event-Driven State Machine
Statement is an event-driven state machine implementation library. Statement is easy to use, and provides a great deal of flexibility around how state machines are defined.
How do I use it?
Statement is organized around the idea that you typically want a state machine per instance for a potentially large number of business entities of the same type. These might be TCP connections, web sessions, hotel reservations, orders, or anything else that goes through a predictable set of states when events happen.
Much more information is available in the docs: https://docs.rs/statement/latest/statement/
Example
use anyhow::{anyhow};
use statement::{StateMachineFactory, StateMachineError};
fn test_double_transition<'a>() -> anyhow::Result<()> {
#[derive(Eq, PartialEq)]
enum StateMachineMessage {
GoToTwo
}
// State here is just an integer
let factory = StateMachineFactory::new()
// Evaluate all transitions in a loop
// until no transition occurs
.cycle(true)
// When we receive a GoToTwo event
// while in state 1, go to state 2
.with_event_transition(
&StateMachineMessage::GoToTwo,
1,
2
)
// When we transition to state 2,
// immediately transition to state 3
.with_auto_transition(
2,
3
)
// Lock the factory object so that
// we can build a state machine
.lock();
// Build the state machine, with an empty () as data
// (we don't care about data for this example)
let mut sm = factory.build(1, ());
// The StateMachine starts in state 1
assert_eq!(1, sm.state);
// Handling an event tells us what state we end up in
match sm.handle_event(StateMachineMessage::GoToTwo) {
Ok(state) => {
assert_eq!(3, *state);
}
Err(StateMachineError::EffectError(from, to, e)) => {
return Err(anyhow!("error changing state from {} to {}: {}", from, to, e));
}
};
// Because of the two transitions that we defined,
// we end up in state 3
assert_eq!(3, sm.state);
Ok(())
}
This is a longer example, showing use of state machine data and more complex transitions:
use std::sync::atomic::Ordering::SeqCst;
use anyhow::anyhow;
use atomic_float::AtomicF64;
use statement::FromState::{Any, AnyOf};
use statement::{StateMachineFactory, StateTransitionEffectData};
use statement::ToState::Same;
struct CalcData {
pub input_value: AtomicF64,
pub stored_value: AtomicF64,
}
#[test]
fn calculator_test() -> anyhow::Result<()> {
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum States {
Idle,
Adding,
Subtracting,
Multiplying,
Dividing
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum Events {
Clear,
Digit { digit: u8 },
Add,
Subtract,
Multiply,
Divide,
Equals
}
impl Events {
fn is_digit(&self) -> bool {
if let Events::Digit { digit: _ } = self { true } else { false }
}
}
let mut init_data = CalcData {
input_value: AtomicF64::new(0f64),
stored_value: AtomicF64::new(0f64)
};
let mut sm = StateMachineFactory::<Events, States, &CalcData>::new()
// This is an example of a logger that runs before any other transition, but doesn't
// do anything in terms of state transitions itself.
.with_transition_effect(
Any,
Same,
|d| {
print!("user sent {:?} event", d.event);
Ok(())
})
.with_predicated_transition_effect(
Any,
Same,
|d| d.event.is_digit(),
|d| {
if let Events::Digit { digit } = d.event {
append_digit(d.data, digit.clone());
}
Ok(())
})
.with_predicated_transition_effect(
AnyOf(vec![States::Adding, States::Subtracting, States::Multiplying, States::Dividing]),
States::Idle,
|d| {
match d.event {
Events::Add | Events::Subtract | Events::Multiply | Events::Divide | Events::Equals => true,
_ => false
}
},
|d| {
apply_function(d);
Ok(())
})
.with_event_transition_effect(&Events::Add, States::Idle, States::Adding, |d| {
swap(d.data);
Ok(())
})
.with_event_transition_effect(&Events::Subtract, States::Idle, States::Subtracting, |d| {
swap(d.data);
Ok(())
})
.with_event_transition_effect(&Events::Multiply, States::Idle, States::Multiplying, |d| {
swap(d.data);
Ok(())
})
.with_event_transition_effect(&Events::Divide, States::Idle, States::Dividing, |d| {
swap(d.data);
Ok(())
})
// This is an example of a logger that runs after any other transition, but doesn't
// do anything in terms of state transitions itself. It continues the log lines from
// the earlier logger
.with_transition_effect(
Any,
Same,
|d| {
println!(", input value is {}, stored value is {}", d.data.input_value.load(SeqCst), d.data.stored_value.load(SeqCst));
Ok(())
})
.lock().build(States::Idle, &mut init_data);
let error_mapper = |_| { anyhow!("error transitioning") };
sm.handle_event(Events::Digit {digit: 2}).map_err(error_mapper)?;
sm.handle_event(Events::Add).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 0}).map_err(error_mapper)?;
sm.handle_event(Events::Subtract).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 1}).map_err(error_mapper)?;
sm.handle_event(Events::Multiply).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 1}).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 2}).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 6}).map_err(error_mapper)?;
sm.handle_event(Events::Divide).map_err(error_mapper)?;
sm.handle_event(Events::Digit {digit: 3}).map_err(error_mapper)?;
sm.handle_event(Events::Equals).map_err(error_mapper)?;
assert_eq!(42f64, sm.data.input_value.load(SeqCst));
return Ok(());
fn append_digit(d: &CalcData, b: u8) {
let input_value_current = d.input_value.load(SeqCst);
d.input_value.store(input_value_current * 10f64 + b as f64, SeqCst);
}
fn swap(d: &CalcData) {
let old_input_value = d.input_value.load(SeqCst);
d.stored_value.store(old_input_value, SeqCst);
d.input_value.store(0f64, SeqCst);
}
fn apply_function(arg: StateTransitionEffectData<Events, States, &CalcData>) {
let old_stored_value = arg.data.stored_value.load(SeqCst);
let old_input_value = arg.data.input_value.load(SeqCst);
match arg.from {
States::Adding => {
arg.data.input_value.store(old_stored_value + old_input_value, SeqCst);
}
States::Subtracting => {
arg.data.input_value.store(old_stored_value - old_input_value, SeqCst);
}
States::Multiplying => {
arg.data.input_value.store(old_stored_value * old_input_value, SeqCst);
}
States::Dividing => {
arg.data.input_value.store(old_stored_value / old_input_value, SeqCst);
}
States::Idle => {}
}
}
}
Dependencies
~255–720KB
~17K SLoC