#si-units #units #si #physics

bin+lib si-vectors

A rust library for physical calculations

1 unstable release

0.1.0 Jan 20, 2024

#732 in Science

Apache-2.0

28KB
461 lines

Rust physics Engine

Enum of SI Units

Prevents misspelling and increases code readability

  1. Metre
  2. Second
  3. Kilogram
  4. Ampere
  5. Kelvin
  6. Mole
  7. Candela

You can print them

println!("An apple is aproximately 1 {}",SiUnit::Kilogram);
println!("A minute is aproximately 60 {}s",SiUnit::Second);

The Value struct

Create a struct that holds an f64 and two vectors of SI Units one for the numerator and the other for the denominator

let fast = Value{magnitude: 10_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::from([SiUnit::Second,SiUnit::Second])};
let slow = Value{magnitude: 2_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::from([SiUnit::Second,SiUnit::Second])};

Add Values

println!("{}",fast.clone()+slow.clone());

Multiply values

Note the units change when preforming multiplication

println!("{}",fast.clone() * slow.clone());

We can also divide

let distance = Value{magnitude: 20_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::<SiUnit>::new()};
let time = Value{magnitude: 2_f64,si_units_num: Vec::from([SiUnit::Second]),si_units_den: Vec::<SiUnit>::new()};

let speed = distance/time;

println!("Speed is {}",speed);

We get a Value representing speed without explicitly creating it.

DerivedUnits and DerivedQuantities

Instead of declaring the whole Value each time, we can use Value templates from the builtin enums DerivedUnits and DerivedQuantities

Derived Units

  1. Hertz
  2. Newtons
  3. Pascals
  4. Joules
  5. Watts
  6. Volts
  7. Coulombs
  8. Sieverts

Derived Quantities

  1. Speed
  2. Velocity
  3. Acceleration
  4. Area
  5. Volume
  6. Mass
  7. Force
  8. Time
  9. Scalar
  10. Distance

The get_value function

The get_value function returns a Value type, and the set_magnitude function changes the magnitude.

let force = DerivedQuantities::Force.get_value().set_magnitude(15_f64);
let pressure = DerivedUnit::Pascals.get_value().set_magnitude(5_f64);

let area = force/pressure;

println!("{}",area);

The same() function

We can also check if the Value we get is indeed an area by comapring it with the builtin Area template using the same() function

assert!(area.same(&DerivedQuantities::Area.get_value()));

SI Constants

You can also use some of the built in physical constants

let g =  SiConstant::GravitationalConstant.get_value();
let c = SiConstant::SpeedOfLight.get_value();

println!("Gravitational Constant is {}",g);
println!("Soeed of light is {}",c);

Examples

We can derive earth's acceleration due to gravity using earth's mass, radius, and the gravitational constant. g = Gm/(r^2) where g is the acceleration, G is the gravitational constant, m is the mass, r is the radius.

let earth_mass = DerivedQuantities::Mass.get_value().set_magnitude(5.972e24);
let earth_radius = DerivedQuantities::Distance.get_value().set_magnitude(6371e3);
let g = SiConstant::GravitationalConstant.get_value();

let acc = g*earth_mass/earth_radius.powi(2);

assert!(acc.same(&DerivedQuantities::Acceleration.get_value()));

println!("{}",acc);

Vectors

We can also represent physical vectors that contain direction

let v = Vector{value: DerivedQuantities::Force.get_value(),theta: PI};
println!("{}",v);

We can add Vectors

let car1 = Vector{value: DerivedQuantities::Force.get_value(),theta: 0_f64};
let car2 = Vector{value: DerivedQuantities::Force.get_value(),theta: PI/2.0};
let collision = car1+car2;
println!("{}",collision);

We can multiply

let v1 = Vector{value: DerivedQuantities::Force.get_value(),theta: 0_f64};
let v2 = Vector{value: DerivedQuantities::Force.get_value(),theta: PI/2.0};
let product = v1*v2;
println!("{}",product);

No runtime deps