1 unstable release
0.1.0 | Jan 20, 2024 |
---|
#732 in Science
28KB
461 lines
Rust physics Engine
Enum of SI Units
Prevents misspelling and increases code readability
- Metre
- Second
- Kilogram
- Ampere
- Kelvin
- Mole
- Candela
You can print them
println!("An apple is aproximately 1 {}",SiUnit::Kilogram);
println!("A minute is aproximately 60 {}s",SiUnit::Second);
The Value struct
Create a struct that holds an f64 and two vectors of SI Units one for the numerator and the other for the denominator
let fast = Value{magnitude: 10_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::from([SiUnit::Second,SiUnit::Second])};
let slow = Value{magnitude: 2_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::from([SiUnit::Second,SiUnit::Second])};
Add Values
println!("{}",fast.clone()+slow.clone());
Multiply values
Note the units change when preforming multiplication
println!("{}",fast.clone() * slow.clone());
We can also divide
let distance = Value{magnitude: 20_f64,si_units_num: Vec::from([SiUnit::Metre]),si_units_den: Vec::<SiUnit>::new()};
let time = Value{magnitude: 2_f64,si_units_num: Vec::from([SiUnit::Second]),si_units_den: Vec::<SiUnit>::new()};
let speed = distance/time;
println!("Speed is {}",speed);
We get a Value representing speed without explicitly creating it.
DerivedUnits and DerivedQuantities
Instead of declaring the whole Value each time, we can use Value templates from the builtin enums DerivedUnits and DerivedQuantities
Derived Units
- Hertz
- Newtons
- Pascals
- Joules
- Watts
- Volts
- Coulombs
- Sieverts
Derived Quantities
- Speed
- Velocity
- Acceleration
- Area
- Volume
- Mass
- Force
- Time
- Scalar
- Distance
The get_value function
The get_value function returns a Value type, and the set_magnitude function changes the magnitude.
let force = DerivedQuantities::Force.get_value().set_magnitude(15_f64);
let pressure = DerivedUnit::Pascals.get_value().set_magnitude(5_f64);
let area = force/pressure;
println!("{}",area);
The same() function
We can also check if the Value we get is indeed an area by comapring it with the builtin Area template using the same() function
assert!(area.same(&DerivedQuantities::Area.get_value()));
SI Constants
You can also use some of the built in physical constants
let g = SiConstant::GravitationalConstant.get_value();
let c = SiConstant::SpeedOfLight.get_value();
println!("Gravitational Constant is {}",g);
println!("Soeed of light is {}",c);
Examples
We can derive earth's acceleration due to gravity using earth's mass, radius, and the gravitational constant. g = Gm/(r^2) where g is the acceleration, G is the gravitational constant, m is the mass, r is the radius.
let earth_mass = DerivedQuantities::Mass.get_value().set_magnitude(5.972e24);
let earth_radius = DerivedQuantities::Distance.get_value().set_magnitude(6371e3);
let g = SiConstant::GravitationalConstant.get_value();
let acc = g*earth_mass/earth_radius.powi(2);
assert!(acc.same(&DerivedQuantities::Acceleration.get_value()));
println!("{}",acc);
Vectors
We can also represent physical vectors that contain direction
let v = Vector{value: DerivedQuantities::Force.get_value(),theta: PI};
println!("{}",v);
We can add Vectors
let car1 = Vector{value: DerivedQuantities::Force.get_value(),theta: 0_f64};
let car2 = Vector{value: DerivedQuantities::Force.get_value(),theta: PI/2.0};
let collision = car1+car2;
println!("{}",collision);
We can multiply
let v1 = Vector{value: DerivedQuantities::Force.get_value(),theta: 0_f64};
let v2 = Vector{value: DerivedQuantities::Force.get_value(),theta: PI/2.0};
let product = v1*v2;
println!("{}",product);