#machine-learning #similarity #rec #recommendations #math #recommender-system

rec_rsys

Library for different maths functions related to recsys and ML

3 releases (1 stable)

1.0.0 Jul 10, 2023
0.1.1 Jun 2, 2023
0.1.0 May 31, 2023

#290 in Machine learning

36 downloads per month

MIT/Apache

69KB
1K SLoC

RecSys

A recommender system toolkit with more maths functions. Currently it's only used to learn and improve about this field, but feel free to participate.

crates.io Released API docs example workflow

Example

You can find a working example here

A simple implementation would be:

// src/s/company.rs

use rec_rsys::models::{one_hot_encode, ItemAdapter, Item};

pub struct Company {
    pub id: u32,
    pub ticker: String,
    pub sector: String,
    pub industry: String,
    pub exchange: String,
    pub country: String,
    pub adj: String,
    pub growth: f32,
}

impl ItemAdapter for Company {
    fn to_item(&self) -> Item {
        Item::new(self.id, self.create_values(), None)
    }
    fn create_values(&self) -> Vec<f32> {
        let mut values = vec![self.growth];
        [
            self.encode_sector(),
            self.encode_industry(),
            self.encode_exchange(),
            self.encode_country(),
            self.encode_adjs(),
        ]
        .iter()
        .for_each(|f| values.extend(f));
        values
    }
    fn get_references(&self) -> Vec<Item> {
        match self.get_references_query() {
            Ok(items) => items.then(|c| c.to_item()).collect::<Vec<Item>>(),
            Err(_e) => vec![],
        }
    }
}

impl Company {
    fn get_references_query(&self) -> Result<Vec<Company>, CRUDError> {
        let query = Orm::new()
            .select("id, sector, industry, exchange, country, adj, growth")
            .from(&Self::table())
            .where_clause()
            .not_equal("id", &self.id.to_string())
            .ready();
        let rows = sqlx::query_as::<_, Self>(&query)
            .fetch_all(&mut Self::connect());
        match rows {
            Ok(json) => Ok(json),
            Err(_e) => Err(CRUDError::WrongParameters),
        }
    }

    fn encode_sector(&self) -> Vec<f32> {
        let sectors = vec![
            "Healthcare",
            "Unknown",
            "Automotive",
            "Technology",
            "Communication Services",
            "Basic Materials",
            "Consumer Cyclical",
            "Industrials",
            "Financial Services",
            "Energy",
            "Utilities",
            "Real Estate",
            "Consumer Defensive",
        ];
        match one_hot_encode(&sectors).get(&self.sector) {
            Some(val) => val.to_vec(),
            None => panic!(),
        }
    }

    // rest of methods ...
}
// src/recommendations/company.rs
use rec_rsys::{algorithms::knn::KNN, models::Item, similarity::SimilarityAlgos};
use super::models::company::Company;

pub struct Recommendation {
    prod_id: u32,
    result: f32,
}

fn generate_recommendations(id: u32, num_recommendations: u8) -> Vec<Recommendation> {
        let company = Company::get(id);
        Self::calculate_recommendations(company.to_item(), company.get_references(), num_recommendations)
    }

fn calculate_recommendations(
        item: Item,
        references: Vec<Item>,
        num_recs: u8,
    ) -> Vec<Recommendation> {
        let knn = KNN::new(item, references, num_recs);
        knn.result(SimilarityAlgos::Cosine)
            .into_iter()
            .map(|item| Recommendation{item.id, item.result})
            .collect()
    }
// src/main.rs
mod models;
mod recommendations;

use recommendations::generate_recommendations;

fn main() {
    let recs = generate_recommendations(1, 5);
}

Improvements

1.- Primordial:

  • Fix possible errors in formulas
  • Add tests for each formula to be sure that it's correct
  • Normalize documentation so is the same everywhere
  • Create two types of docs. One in separated .md file with extense explanation and math examples. And the second one more for "code use"
  • Fix typos
  • Add benches for the formulas and overall functions

2.- Nice to have:

  • Add more docs in .md related
  • Add tests in the docs
  • Normalize the results. Either 0 or 1 should represent 100% of similarity depending of the formula
  • Convert the results into structs with more information
  • Improve the code snippets. (The title can be the method's name)
  • Make it async

3.- Final steps:

  • Accept incoming data
  • Convert incoming data into structs?
  • Process data and get rankings
  • Check ranking accuracy
  • Run multiples algorithms at the same time

4.- Future nice to have:

  • Save data and results
  • Create some sort of "cache" to avoid multiples recalculations
  • Use ndarrays of some sort of efficient sci-library
  • Compare the performance and results between Generic types, f32 and f64.

How to:

  • Docs structure :
/// # [Name of the concept]
/// [Small explanation of the function]
///
/// ## Parameters:
/// * `[Parameter of the function]`: [Small explanation]
///
/// ## Returns:
/// * [What does the function returns]
/// 
/// ## Examples:
/// [Examples]
/// 
#[doc = include_str!("../docs/example/example.md")]
pub fn example(){}

In the folder docs/ create a new .md file with the mathematical formula, explanation and examples if necessary.

# [Name of the concept]

## Explanation:
[Explanation of the mathematical concept]

## Formula:
$$ [Mathematical formula in raw katex format] $$

### Where:
* [Definition of each component of the formula]
  • Order :
    Keep the related concepts together

Dependencies

~78MB
~1M SLoC