7 unstable releases (3 breaking)

0.4.0 Feb 9, 2025
0.3.3 Aug 18, 2024
0.2.1 Feb 28, 2024
0.1.0 Dec 16, 2023

#1307 in Machine learning

Download history 70/week @ 2025-02-01 196/week @ 2025-02-08 78/week @ 2025-02-15 64/week @ 2025-02-22 66/week @ 2025-03-01 82/week @ 2025-03-08 74/week @ 2025-03-15 59/week @ 2025-03-22 53/week @ 2025-03-29 64/week @ 2025-04-05 58/week @ 2025-04-12 51/week @ 2025-04-19 66/week @ 2025-04-26 63/week @ 2025-05-03 64/week @ 2025-05-10 43/week @ 2025-05-17

244 downloads per month
Used in 3 crates (via kalosm-language)

MIT/Apache

290KB
5.5K SLoC

rbert

A Rust wrapper for bert sentence transformers implemented in Candle

Usage

use kalosm_language_model::Embedder;
use rbert::*;

#[tokio::main]
async fn main() -> anyhow::Result<()> {
    let mut bert = Bert::new().await?;
    let sentences = [
        "Cats are cool",
        "The geopolitical situation is dire",
        "Pets are great",
        "Napoleon was a tyrant",
        "Napoleon was a great general",
    ];
    let embeddings = bert.embed_batch(sentences).await?;
    println!("embeddings {:?}", embeddings);

    // Find the cosine similarity between the first two sentences
    let mut similarities = vec![];
    let n_sentences = sentences.len();
    for (i, e_i) in embeddings.iter().enumerate() {
        for j in (i + 1)..n_sentences {
            let e_j = embeddings.get(j).unwrap();
            let cosine_similarity = e_j.cosine_similarity(e_i);
            similarities.push((cosine_similarity, i, j))
        }
    }
    similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
    for &(score, i, j) in similarities.iter() {
        println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
    }

    Ok(())
}

Dependencies

~32–49MB
~868K SLoC