6 releases
0.3.3 | Aug 18, 2024 |
---|---|
0.3.2 | Aug 14, 2024 |
0.2.1 | Feb 28, 2024 |
0.1.0 | Dec 16, 2023 |
#1090 in Machine learning
275 downloads per month
Used in 5 crates
(2 directly)
180KB
3.5K
SLoC
rbert
A Rust wrapper for bert sentence transformers implemented in Candle
Usage
use kalosm_language_model::Embedder;
use rbert::*;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
let mut bert = Bert::new().await?;
let sentences = [
"Cats are cool",
"The geopolitical situation is dire",
"Pets are great",
"Napoleon was a tyrant",
"Napoleon was a great general",
];
let embeddings = bert.embed_batch(sentences).await?;
println!("embeddings {:?}", embeddings);
// Find the cosine similarity between the first two sentences
let mut similarities = vec![];
let n_sentences = sentences.len();
for (i, e_i) in embeddings.iter().enumerate() {
for j in (i + 1)..n_sentences {
let e_j = embeddings.get(j).unwrap();
let cosine_similarity = e_j.cosine_similarity(e_i);
similarities.push((cosine_similarity, i, j))
}
}
similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
for &(score, i, j) in similarities.iter() {
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
}
Ok(())
}
Dependencies
~35–57MB
~1M SLoC