6 releases
0.1.5 | Mar 23, 2025 |
---|---|
0.1.4 | Mar 16, 2025 |
#173 in Images
458 downloads per month
460KB
7K
SLoC
🛠️ RasterKit
A powerful Rust toolkit for working with geospatial raster data
RasterKit is your go-to toolkit for working with geospatial raster data. Built with Rust for speed and reliability, it lets you analyze, manipulate, and extract data from TIFF and GeoTIFF files with ease, whether you're using the command-line interface or the API.
✨ Features
-
📊 Data Analysis: Peek inside TIFF/GeoTIFF files to understand their structure and metadata
-
🗺️ Flexible Extraction: Grab exactly the region you need using pixel coordinates, bounding boxes, or even a point and radius
-
🔵 Shape Options: Extract square or circular regions - perfect for analyzing areas around points of interest
-
🎨 Colormap Magic: Apply colormaps to turn grayscale data into beautiful visualizations
-
🎯 Value Filtering: Show only the values that matter by filtering pixel ranges
-
📈 Data for Analysis: Pull out raw numeric data as CSV, JSON, or NumPy arrays for further analysis
-
🗜️ Smart Compression: Convert between compression formats to optimize for size or speed
-
🚀 Blazing Fast: Written in Rust to handle even your largest datasets efficiently
-
🧩 Build On It: Extensible architecture makes it easy to add new formats and capabilities
📦 Installation
Clone the repository and build with Cargo:
git clone https://github.com/mauricemojito/rasterkit.git
cd rasterkit
cargo build --release
🚀 Usage
Analyzing a TIFF File
Take a peek at what's inside your TIFF:
rasterkit input.tif
Want more details? Just add --verbose
:
rasterkit input.tif --verbose
Image Extraction
Extract regions in multiple ways:
Extract the entire image:
rasterkit input.tif --extract --output extracted.tif
Extract a rectangle of pixels:
rasterkit input.tif --extract --output region.tif --region=100,100,500,500
Extract a geographic bounding box (Web Mercator):
rasterkit input.tif --extract --output region.tif --bbox=-12626828,7529611,-12603877,7508004 --crs=3857
Extract area around a point (WGS84 coordinates):
rasterkit input.tif --extract --output point_extract.tif --coordinate="-109.22624,56.13484" --radius=5000 --crs=4326 --shape=square
Extract a circular region:
rasterkit input.tif --extract --output circle.png --coordinate="-109.22624,56.13484" --radius=5000 --crs=4326 --shape=circle
Value Filtering
Filter specific value ranges in your data:
Show only values between 15 and 160:
rasterkit input.tif --extract --output filtered.tif --filter="15,160"
Make values outside the range transparent:
rasterkit input.tif --extract --output filtered.png --filter="15,160" --filter-transparency
Reprojection
Reproject your data to a different coordinate system:
rasterkit input.tif --extract --output reprojected.tif --coordinate="-109.22624,56.13484" --crs=4326 --proj=3857 --radius=5000
Array Data Extraction
Extract raw data for external analysis:
Export to CSV:
rasterkit input.tif --extract-array --output data.csv
Export to JSON:
rasterkit input.tif --extract-array --array-format=json --output data.json
Export to NumPy array:
rasterkit input.tif --extract-array --array-format=npy --output data.npy
Working with Colormaps
Apply colormaps to your raster data:
Extract and save a colormap:
rasterkit input.tif --colormap-output=colormap.sld
Apply a colormap when extracting data:
rasterkit input.tif --extract --output colored.tif --colormap-input=colormap.sld
Converting Compression
Optimize raster file compression:
Remove compression:
rasterkit input.tif --convert --output uncompressed.tif --compression-name=none
Use Deflate compression:
rasterkit input.tif --convert --output compressed.tif --compression-name=deflate
Use ZStd compression:
rasterkit input.tif --convert --output compressed.tif --compression-name=zstd
🧠 API Usage
Use RasterKit in your Rust code:
use rasterkit::api::RasterKit;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let kit = RasterKit::new(Some("rasterkit.log"))?;
let analysis = kit.analyze("input.tif")?;
println!("{}", analysis);
kit.extract(
"input.tif", "output.tif",
Some((100, 100, 500, 500)), None, None, None, None, None,
None, None, false
)?;
kit.extract(
"input.tif", "geo_output.png",
None, None, Some("-109.22624,56.13484"), Some(5000.0),
Some("circle"), Some(4326), Some("colormap.sld"),
Some("15,160"), true
)?;
kit.extract_to_array("input.tif", "data.csv", "csv", None)?;
Ok(())
}
🛣️ Roadmap
-
🌈 Support for more raster formats (GeoPackage, NetCDF, etc.)
-
🔮 Data visualization features
-
⚡ Parallel processing for even faster performance
-
🧪 Machine learning integration
🤝 Contributing
Contributions are welcome! If you find a bug, have an idea for a new feature, or want to improve the documentation, open a pull request.
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
Dependencies
~14–23MB
~311K SLoC