2 releases
0.3.1 | Jun 5, 2019 |
---|---|
0.3.0 | Jun 5, 2019 |
#616 in Machine learning
34KB
807 lines
R.A.I.L: A Rust Artificial Intelligence Library
RAIL is designed to be a library for easily creating and training Neural Networks, akin to the Keras API. It aims to be fast and easy to use.
Dependencies
RAIL depends on arrayfire-rust, so before using RAIL make sure you have arrayfire installed.
A Simple XOR Problem
Solving the XOR Problem with Mold is super easy! Simply add the crate to your Cargo.toml:
rail = { git = "https://github.com/nlsnightmare/rail" }
Then add this to your code
use rail::model::Model;
use rail::layers::dense::Dense;
use rail::layers::activations::Activation;
pub fn main() {
let mut model = Model::new()
.learning_rate(0.01)
.input_size(2)
.layer(Dense::new(2).activation(Activation::Tanh))
.layer(Dense::new(1).activation(Activation::Tanh))
.build(true)
.unwrap();
let tranining_data = vec![
(vec![0., 0.], vec![0.]),
(vec![0., 1.], vec![1.]),
(vec![1., 0.], vec![1.]),
(vec![1., 1.], vec![0.]),
];
// Train with a batch of 2 for 4000 epochs
model.train(&tranining_data, 2, 4000);
println!("[0, 0] -> {}", model.predict(vec![0., 0.])[0]); // should be close to 0
println!("[0, 1] -> {}", model.predict(vec![0., 1.])[0]); // should be close to 1
println!("[1, 0] -> {}", model.predict(vec![1., 0.])[0]); // should be close to 1
println!("[1, 1] -> {}", model.predict(vec![1., 1.])[0]); // should be close to 0
}
Plans
As of now, RAIL is in a very early state, and under heavy development.
The API will change a lot.
So far, only Dense (aka fully connected) layers are supported, and batched SGD is the only way of training the network.
However, there are plans to support:
- Convolutional Layers
- RNN Cells
- LSTM Cells
- Genetic Crossover
- ADAM optimizer
- More Activation functions
- More Error functions
- Documentation
Dependencies
~2.5MB
~41K SLoC