2 releases
0.1.1 | Nov 22, 2023 |
---|---|
0.1.0 | Nov 22, 2023 |
#3 in #ort
17KB
162 lines
ort-batcher
Small crate to batch inferences of ONNX models using ort. Inspired by batched_fn.
Note that it only works with models that:
- Have their first dimension dynamic (-1), so they can be batched.
- Inputs and outputs are tensors of type
float32
.
Usage
let max_batch_size = 32;
let max_wait_time = Duration::from_millis(80);
let batcher = Batcher::spawn(session, max_batch_size, max_wait_time);
// in some thread
let inputs = vec![ArrayD::<f32>::zeros(vec![7, 8, 9])];
let outputs = batcher.run(inputs).unwrap();
Example
Check example.rs:
use ndarray::{ArrayD, Axis};
use ort::{CUDAExecutionProvider, Environment, SessionBuilder, Value};
use ort_batcher::batcher::Batcher;
use std::time::Duration;
fn main() -> ort::Result<()> {
tracing_subscriber::fmt::init();
ort::init()
.with_execution_providers([CUDAExecutionProvider::default().build()])
.commit()?;
let session = Session::builder()?
.with_intra_threads(1)?
.with_model_from_memory(include_bytes!("../tests/model.onnx"))?;
{
let start = std::time::Instant::now();
// 128 threads
// 256 inferences each
// sequential
std::thread::scope(|s| {
for _ in 0..128 {
let session = &session;
let input = ArrayD::<f32>::zeros(vec![7, 8, 9]);
s.spawn(move || {
for _ in 0..256 {
let value = Value::from_array(input.clone().insert_axis(Axis(0))).unwrap();
let _output = session.run([value]).unwrap()[0]
.extract_tensor::<f32>()
.unwrap()
.view()
.index_axis(Axis(0), 0)
.to_owned();
}
});
}
});
println!("sequential: {:?}", start.elapsed());
}
let max_batch_size = 32;
let max_wait_time = Duration::from_millis(10);
let batcher = Batcher::spawn(session, max_batch_size, max_wait_time);
{
let start = std::time::Instant::now();
// 128 threads
// 256 inferences each
// batched
std::thread::scope(|s| {
for _ in 0..128 {
let batcher = &batcher;
let input = ArrayD::<f32>::zeros(vec![7, 8, 9]);
s.spawn(move || {
for _ in 0..256 {
let _output = batcher.run(vec![input.clone()]).unwrap();
}
});
}
});
println!("batched: {:?}", start.elapsed());
}
Ok(())
}
Note that to have good results you have to use heavy model in a GPU, otherwise you may not see any difference.
Dependencies
~3MB
~51K SLoC