10 releases
0.0.10 | Mar 31, 2020 |
---|---|
0.0.9 | Feb 19, 2020 |
0.0.6 | Nov 14, 2019 |
#11 in #next-gen
34 downloads per month
8KB
179 lines
::next_gen
Safe generators on stable Rust.
Examples
Reimplementing a range
iterator
use ::next_gen::prelude::*;
#[generator(yield(u8))]
fn range (start: u8, end: u8)
{
let mut current = start;
while current < end {
yield_!(current);
current += 1;
}
}
mk_gen!(let generator = range(3, 10));
assert_eq!(
generator.collect::<Vec<_>>(),
(3.. 10).collect::<Vec<_>>(),
);
Implementing an iterator over prime numbers using the sieve of Eratosthenes
use ::next_gen::prelude::*;
enum NeverSome {}
/// Generator over all the primes less or equal to `up_to`.
#[generator(yield(usize))]
fn primes_up_to (up_to: usize)
-> Option<NeverSome>
{
if up_to < 2 { return None; }
let mut sieve = vec![true; up_to.checked_add(1).expect("Overflow")];
let mut p: usize = 1;
loop {
p += 1 + sieve
.get(p + 1..)?
.iter()
.position(|&is_prime| is_prime)?
;
yield_!(p);
let p2 = if let Some(p2) = p.checked_mul(p) { p2 } else {
continue
};
if p2 >= up_to { continue; }
sieve[p2..]
.iter_mut()
.step_by(p)
.for_each(|is_prime| *is_prime = false)
;
}
}
mk_gen!(let primes = primes_up_to(10_000));
for prime in primes {
assert!(
(2_usize..)
.take_while(|&n| n.saturating_mul(n) <= prime)
.all(|n| prime % n != 0)
);
}
Defining an iterator with self-borrowed state
This is surely the most useful feature of a generator.
Consider, for instance, the following problem:
fn iter_locked (elems: &'_ Mutex<Set<i32>>)
-> impl '_ + Iterator<Item = i32>
Miserable attempts without generators
No matter how hard you try, without using unsafe
, or some other
unsafe
-using self-referential library/tool, you won't be able to feature such
a signature!
-
The following fails:
fn iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>) -> impl '_ + Iterator<Item = i32> { ::std::iter::from_fn({ let locked_elems = mutexed_elems.lock().unwrap(); let mut elems = locked_elems.iter().copied(); move || { // let _ = locked_elems; elems.next() } // Error, borrowed `locked_elems` is not captured and is thus dropped! }) }
error[E0515]: cannot return value referencing local variable `locked_elems` --> src/lib.rs:122:5 | 11 | / ::std::iter::from_fn({ 12 | | let locked_elems = mutexed_elems.lock().unwrap(); 13 | | let mut elems = locked_elems.iter().copied(); | | ------------------- `locked_elems` is borrowed here 14 | | move || { ... | 17 | | } // Error, borrowed `locked_elems` is not captured and is thus dropped! 18 | | }) | |______^ returns a value referencing data owned by the current function | = help: use `.collect()` to allocate the iterator
-
as well as this:
fn iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>) -> impl '_ + Iterator<Item = i32> { ::std::iter::from_fn({ let locked_elems = mutexed_elems.lock().unwrap(); let mut elems = locked_elems.iter().copied(); move || { let _ = &locked_elems; // ensure `locked_elems` is captured (and thus moved) elems.next() // Error, can't use borrow of moved value! } }) }
error[E0515]: cannot return value referencing local variable `locked_elems` --> src/lib.rs:144:5 | 11 | / ::std::iter::from_fn({ 12 | | let locked_elems = mutexed_elems.lock().unwrap(); 13 | | let mut elems = locked_elems.iter().copied(); | | ------------------- `locked_elems` is borrowed here 14 | | move || { ... | 17 | | } 18 | | }) | |______^ returns a value referencing data owned by the current function | = help: use `.collect()` to allocate the iterator error[E0505]: cannot move out of `locked_elems` because it is borrowed --> src/lib.rs:147:9 | 8 | fn iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>) | - let's call the lifetime of this reference `'1` ... 11 | / ::std::iter::from_fn({ 12 | | let locked_elems = mutexed_elems.lock().unwrap(); 13 | | let mut elems = locked_elems.iter().copied(); | | ------------------- borrow of `locked_elems` occurs here 14 | | move || { | | ^^^^^^^ move out of `locked_elems` occurs here 15 | | let _ = &locked_elems; // ensure `locked_elems` is captured (and thus moved) | | ------------ move occurs due to use in closure 16 | | elems.next() // Error, can't use borrow of moved value! 17 | | } 18 | | }) | |______- returning this value requires that `locked_elems` is borrowed for `'1` error: aborting due to 2 previous errors
-
In other cases sub-efficient workarounds may be available
Such as when that
Set
would be aVec
instead. In that case, we can use indices as a poorman's self-reference, with no "official" lifetimes and thus Rust not complaining:fn iter_locked (mutexed_vec: &'_ Mutex<Vec<i32>>) -> impl '_ + Iterator<Item = i32> { ::std::iter::from_fn({ let locked_vec = mutexed_vec.lock().unwrap(); let mut indices = 0.. locked_vec.len(); move /* locked_vec, indices */ || { let i = indices.next()?; Some(locked_vec[i]) // copies, so OK. } }) } let mutexed_elems = Mutex::new(vec![27, 42]); let mut iter = iter_locked(&mutexed_elems); assert_eq!(iter.next(), Some(27)); assert_eq!(iter.next(), Some(42)); assert_eq!(iter.next(), None);
But with generators this is easy:
use ::next_gen::prelude::*;
#[generator(yield(i32))]
fn gen_iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>)
{
let locked_elems = mutexed_elems.lock().unwrap();
for elem in locked_elems.iter().copied() {
yield_!(elem);
}
}
and voilà!
That #[generator] fn
is the key constructor for our safe self-referential
iterator!
Now, instantiating an iterator off a self-referential generator has a subtle
aspect, muck alike that of polling a self-referential Future
(that's what a
missing Unpin
bound means): we need to get it pinned before it can be polled!
About pinning "before use", and the two forms of pinning
-
Getting a
Future
:let future = async { ... }; // or let future = some_async_fn(...);
-
Pinning an instantiated
Future
in the heap (Box
ed):// Pinning it in the heap (boxed): let mut pinned_future = Box::pin(future) // or, through an extension trait (`::futures::future::FutureExt`): let mut pinned_future = future.boxed() // this also incidentally `dyn`-erases the future.
-
Now we can return it, or poll it:
if true { pinned_future.as_mut().poll(...); } // and/or return it: return pinned_future;
-
-
Pinning an instantiated
Future
in the stack (pinned to the local scope):use ::some_lib::some_pinning_macro as stack_pinned; // Pinning it in the "stack" stack_pinned!(mut future); /* the above shadows `future`, thus acting as: let mut future = magic::Stack::pin(future); // */ // Let's rename it for clarity: let mut pinned_future = future;
-
Now we can poll it / use it within the current stack frame, but we cannot return it.
pinned_future.as_mut().poll(...)
-
Well, it turns out that for generators it's similar:
-
Once you have a
#[generator] fn
"generator constructor"use ::next_gen::prelude::*; #[generator(yield(u8))] fn foo () { yield_!(42); }
-
Instantiation requires pinning, and thus:
-
Stack-pinning: cheap,
no_std
compatible, usable within the same scope. But it cannot be returned.mk_gen!(let mut generator = foo()); // can be used within the same scope assert_eq!(generator.next(), Some(42)); assert_eq!(generator.next(), None); // but it can't be returned // return generator; /* Error, can't return borrow to local value */
-
Heap-pinning: a bit more expensive, requires an
::alloc
ator or not beingno_std
, but the so-pinned generator can be returned.mk_gen!(let mut generator = box foo()); // can be used within the same scope if some_condition { assert_eq!(generator.next(), Some(42)); assert_eq!(generator.next(), None); } // and/or it can be returned return generator; // OK
-
So, back to our example, this is what we need to do:
use ::next_gen::prelude::*;
/// We already have:
#[generator(yield(i32))]
fn gen_iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>)
...
/// Now let's wrap-it so that it yields a nice iterator:
fn iter_locked (mutexed_elems: &'_ Mutex<Set<i32>>)
-> impl '_ + Iterator<Item = i32>
{
if true {
// One possible syntax to instantiate the generator
mk_gen!(let generator = box gen_iter_locked(mutexed_elems));
generator
} else {
// or, since we are `box`-ing, we can directly do:
gen_iter_locked.call_boxed((mutexed_elems, ))
}
// : Pin<Box<impl '_ + Generator<Yield = i32>>>
// : impl '_ + Iterator<Item = i32>
}
let mutexed_elems = Mutex::new([27, 42].iter().copied().collect::<Set<_>>());
let mut iter = iter_locked(&mutexed_elems);
assert_eq!(iter.next(), Some(27));
assert_eq!(iter.next(), Some(42));
assert_eq!(iter.next(), None);
-
If the
iter_locked()
function you are trying to implement is part of a trait definition and thus need to name the type, at which point theimpl '_ + Iterator…
existential syntax can be problematic, you can then usedyn
instead ofimpl
, at the cost of having to mention thePin<Box<>>
layer:// instead of -> impl '_ + Iterator<Item = i32> // write: -> Pin<Box<dyn '_ + Generator<Yield = i32, Return = ()>>>
An example
use ::next_gen::prelude::*; struct Once<T>(T); impl<T : 'static> IntoIterator for Once<T> { type Item = T; type IntoIter = Pin<Box<dyn Generator<(), Yield = T, Return = ()> + 'static>>; fn into_iter (self: Once<T>) -> Self::IntoIter { #[generator(yield(T))] fn once_generator<T> (value: T) { yield_!(value); } once_generator.call_boxed((self.0, )) } } assert_eq!(Once(42).into_iter().next(), Some(42));
Resume arguments
This crate has been updated to support resume arguments: the Generator
trait
is now generic over a ResumeArg
parameter (which defaults to ()
), and its
.resume(…)
method now takes a parameter of that type:
let _: GeneratorState<Yield, Return> = generator.as_mut().resume(resume_arg);
this makes it so the yield_!(…)
expressions inside the generator evaluate to
ResumeArg
rather than ()
:
let _: ResumeArg = yield_!(value);
Macro syntax
In order to express this using the #[generator]
attribute, add a
resume(Type)
parameter to it:
use ::next_gen::prelude::*;
type ShouldContinue = bool;
#[generator(yield(i32), resume(ShouldContinue))]
fn g ()
{
for i in 0.. {
let should_continue = yield_!(i);
if should_continue.not() {
break;
}
}
}
mk_gen!(let mut generator = g());
assert!(matches!(
generator.as_mut().resume(bool::default()), // <- this resume arg is being ignored
GeneratorState::Yielded(0),
));
assert!(matches!(
generator.as_mut().resume(true),
GeneratorState::Yielded(1),
));
assert!(matches!(
generator.as_mut().resume(true),
GeneratorState::Yielded(2),
));
assert!(matches!(
generator.as_mut().resume(true),
GeneratorState::Yielded(3),
));
assert!(matches!(
generator.as_mut().resume(false),
GeneratorState::Complete,
));
If you don't want to ignore/disregard the first resume argument (the "start
argument" we could call it), then you can append a as <binding>
after the
resume(ResumeArgTy)
annotation:
use ::next_gen::prelude::*;
type ShouldContinue = bool;
#[generator(
yield(i32),
resume(ShouldContinue) as mut should_continue,
)]
fn g ()
{
for i in 0.. {
if should_continue.not() {
break;
}
should_continue = yield_!(i);
}
}
-
A mind-bending example of recursion with an "automagically segmented stack"
use ::next_gen::prelude::*; /// A silly recursive function, computing the sum of integers up to `n`. /// /// If you know your math, you know this equals `n * (n + 1) / 2`. /// /// This result is quite "obvious" from the geometric representation: /// /// ```text /// # . . . . . <- Amount of #: 1 /// # # . . . . <- Amount of #: 2 /// # # # . . . <- Amount of #: 3 /// # # # # . . <- Amount of #: 4 /// ⋮ … ⋱ ⋮ /// # # # # # # <- Amount of #: N /// Height = N + 1 Total: 1 + 2 + … + N /// Width = N /// Half the area of the "square": (N + 1) * N / 2 /// ``` /// /// As you can see, computing the sum `1 + 2 + 3 + … + N` is the same as /// counting the number of `#` in that diagram. And those `#` fill half a /// "square". But it's actually not exactly a `N x N` square since we have /// from `1` to `N` rows, that is, `N + 1` rows, and a width of `N`. /// /// This results in `(n + 1) * n` for the area of the "square", followed by /// the `/ 2` halving operation. fn triangular (n: u64) -> u64 { #[generator(yield(u64), resume(u64))] fn triangular (n: u64) -> u64 { use yield_ as recurse; if n == 0 { 0 } else { n + recurse!(n - 1) } } drive_recursion(n, |n| triangular.call_boxed((n, ))) } const N: u64 = 10_000; assert_eq!( triangular(N), N * (N + 1) / 2 ); // where the `drive_recursion` "runtime" is defined as: /// A recursive computation can be seen as a "suspensible coroutine", /// whereby, when needing to "compute-recurse" into new inputs, /// that current computation just suspends and yields the new input /// for which it requests a computation. /// /// The driver / "executor", thus starts with the initial input, and /// polls the suspensible coroutine until reaching a suspension point. /// /// Such suspension point gives the driver a new computation it needs to /// perform (updates `input`), and a new "customer" waiting for that new /// result: that suspended computation. These stack onto each other as /// we recurse, and when the innermost computation _completes_ / _returns_ /// rather than yield-enqueuing a new one, we can then feed that result to /// the top-most suspended computation, _resuming_ it. fn drive_recursion<Input, SuspendedComputation, Result> ( input: Input, mut start_computing: impl FnMut(Input) -> Pin<Box<SuspendedComputation>>, ) -> Result where SuspendedComputation : Generator< /* ResumedWith = */ Result, // recursive result Yield = Input, // recursive "query" Return = Result, > , Result : Default, // to feed the initial dummies. { // This is the "recursive state stack", when you think about this, // and with this approach we automagically get it heap-allocated // (the `Pin<Box<GeneratorFn…>>` state machines are the main things // heap-allocating the "recursively captured local state". // This vec is just storing these `Pin<Box<…>>` things, to avoid // stack-allocating those (which naively recursing within this very body // would achieve). let mut suspended_computations = Vec::new(); let mut last_suspended_computation = start_computing(input); let mut computation_result = Result::default(); // start with a dummy one loop { match last_suspended_computation.resume_unpin(computation_result) { // We reached `return`: completion of the current computation. | GeneratorState::Returned(computation_result_) => { match suspended_computations.pop() { // If it was the outer-most computation, we've finished. | None => return computation_result_, // Otherwise, feed the current result to the outer // computation that had previously yield-requested the // current computation. | Some(suspended_computation) => { last_suspended_computation = suspended_computation; computation_result = computation_result_; }, } }, // We need to "compute-recurse" ourselves with this new `arg` | GeneratorState::Yielded(arg) => { suspended_computations.push(last_suspended_computation); last_suspended_computation = start_computing(arg); computation_result = Result::default(); }, } } }
The "stacks" (storage for the local variables captured within non-terminal / non-tail recursive calls) are thus, in practice, state that crosses the
yield_!()
points, resulting in state captured by theGenerator
. And since theGenerator
instance isBox
ed, it means such stack ends up in the heap, behind a pointer. This happens for each and every recursion step.This means that the stack has successfully been segmented (within each
Generator
instance) into the heap; which is otherwise a cumbersome manual process that is nonetheless needed for non-trivial recursive functions.
Features
Performance
The crate enables no-allocation generators, thanks the usage of stack pinning. When used in that fashion, it should thus be close to zero-cost.
Ergonomics / sugar
A lot of effort has been put into macros and an attribute macro providing the most ergonomic experience when dealing with these generators, despite the complex / subtle internals involved, such as stack pinning.
Safe
Almost no unsafe
is used, the exception being:
-
Stack pinning, where it uses the official
::pin_utils::pin_mut
implementation; -
Using the pinning guarantee to extend a lifetime;
no_std
support
This crates supports #![no_std]
. For it, just disable the default "std"
feature:
[dependencies]
next-gen.version = "..."
next-gen.default-features = false # <- ADD THIS to disable `std`&`alloc` for `no_std` compat
next-gen.features = [
"alloc", # If your no_std platform has access to allocators.
# "std", # `default-features` bundles this.
]
Idea
Since generators and coroutines rely on the same internals, one can derive a
safe implementation of generators using the async
/ await
machinery, which
is only already in stable Rust.
A similar idea has also been implemented in https://docs.rs/genawaiter.
Dependencies
~1.5MB
~37K SLoC